
ibm.com/redbooks

Linux on IBM Eserver
zSeries and S/390:
Performance Measurement and Tuning

Gregory Geiselhart
Laurent Dupin

Deon George
Rob van der Heij

John Langer
Graham Norris

Don Robbins
Barton Robinson
Gregory Sansoni

Steffen Thoss

Understanding Linux performance on
zSeries

z/VM performance concepts

Tuning z/VM Linux
guests

Front cover

Linux on IBM ̂zSeries and S/390:
Performance Measurement and Tuning

May 2003

International Technical Support Organization

SG24-6926-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2003)

This edition applies to z/VM Version 4 Release 3 and multiple Linux distributions. Red Hat
Version 7.2 for IBM ^ zSeries and SuSE Linux Enterprise Server 7 are used for examples
in this publication.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
ESALPS overview . xii

Monitoring requirements . xiii
Standard interfaces . xiii
Performance database . xiv
Real-time monitoring with ESAMON . xiv

OMEGAMON for VM . xiv
OMEGAMON XE for Linux . xv

The team that wrote this redbook. xv
Become a published author . xvii
Comments welcome. xviii

Chapter 1. Virtualization and server consolidation 1
1.1 Server consolidation and virtualization . 2

1.1.1 Virtualization of the CPU . 2
1.1.2 Virtualization of memory . 3
1.1.3 Levels of virtualization. 3

1.2 Sharing resources . 3
1.2.1 Overcommitting resources . 4
1.2.2 Top speed versus mileage . 4

1.3 The art of tuning a system. 5
1.3.1 What tuning does not do . 5
1.3.2 Where tuning can help . 5
1.3.3 Exchange of resources . 6
1.3.4 Workload profile . 7

Chapter 2. z/VM memory and storage concepts . 9
2.1 The z/VM storage hierarchy . 10
2.2 Guidelines for allocation of z/VM storage . 12
2.3 z/VM use of memory . 13
2.4 Virtual memory as seen by Linux guests. 15

2.4.1 The double paging effect. 15
2.4.2 Allocating memory to z/VM guests . 17
2.4.3 VDISKs . 18

2.5 Influencing z/VM memory management . 18
2.6 Paging and spooling . 20
© Copyright IBM Corp. 2003. All rights reserved. iii

Chapter 3. Linux virtual memory concepts. 21
3.1 Components of the Linux memory model . 22

3.1.1 Linux memory . 22
3.1.2 Linux swap space . 23

3.2 Linux memory management . 23
3.2.1 Page cleaning . 24

3.3 Observing Linux memory usage . 25
3.3.1 Kernel memory usage at system boot. 26
3.3.2 Detailed memory usage reported by /proc/meminfo 27
3.3.3 Using the vmstat command. 29

3.4 Illustrating Linux aggressive caching. 30
3.4.1 Choosing the correct virtual machine size . 32

3.5 Conclusions for sizing z/VM Linux guests . 33

Chapter 4. Tuning memory for z/VM Linux guests 35
4.1 Memory tuning recommendations . 36

4.1.1 Reduce storage of idle servers . 36
4.1.2 Reduce operational machine sizes . 36
4.1.3 Reduce infrastructure storage costs . 37

4.2 Exploiting the shared kernel . 37
4.2.1 Building an NSS-enabled Linux kernel . 39
4.2.2 Defining a skeletal system data file for the Linux NSS 41
4.2.3 Saving the kernel in the Linux NSS. 43
4.2.4 Changing Linux images to use the shared kernel in NSS 44

Chapter 5. Examining Linux swap device options 47
5.1 Linux swapping . 48
5.2 Swapping with ECKD discipline . 50

5.2.1 Effect of the number of processes on Linux swapping 53
5.2.2 Impact of page-cluster on MDC hit rate . 58

5.3 The FBA discipline . 59
5.3.1 Advantages of a VDISK swap device . 60
5.3.2 Enabling an FBA VDISK . 61
5.3.3 Swapping with FBA discipline . 62

5.4 The DIAGNOSE discipline . 64
5.4.1 Using DIAGNOSE I/O for 3390 DASD . 64
5.4.2 Swapping with DIAGNOSE discipline . 65

5.5 Using DIAGNOSE I/O for VDISK . 67
5.5.1 Enabling DIAGNOSE I/O for VDISK . 68
5.5.2 Swapping with DIAGNOSE I/O for VDISK . 68

5.6 Using multiple VDISKs for swapping . 71
5.7 Linux swap device recommendations . 72
5.8 Program text for hogmem . 73
iv Linux on IBM ^ zSeries and S/390: Performance Measurement and Tuning

5.9 Initializing a VDISK using CMS tools. 74

Chapter 6. CPU resources and the z/VM scheduler 77
6.1 Understanding LPAR weights and options . 78

6.1.1 Physical LPAR overhead . 80
6.1.2 Converting weights to logical processor speed. 81
6.1.3 LPAR analysis example . 82
6.1.4 LPAR options . 82
6.1.5 Shared versus dedicated processors . 83

6.2 The CP scheduler . 83
6.2.1 Transaction classification . 84
6.2.2 The dormant list . 84
6.2.3 The eligible list . 84
6.2.4 The dispatch list . 85

6.3 Virtual machine scheduling . 85
6.3.1 Entering the dormant list . 86
6.3.2 Entering the eligible list . 87
6.3.3 Entering the dispatch list . 87
6.3.4 Scheduling virtual processors . 88
6.3.5 z/VM scheduling and the Linux timer patch 89

6.4 CP scheduler controls . 89
6.4.1 Global SRM controls . 89
6.4.2 The CP QUICKDSP option . 94
6.4.3 The CP SET SHARE command . 94

6.5 Analysis of the SET SRM LDUBUF control . 95
6.5.1 Default setting analysis . 95
6.5.2 User queue analysis . 96
6.5.3 DASD analysis . 97

6.6 Virtual Machine Resource Manager . 100
6.6.1 Implications of VMRM . 101
6.6.2 Further information about VMRM . 102

Chapter 7. Tuning processor performance for z/VM Linux guests 103
7.1 Processor tuning recommendations . 104

7.1.1 Processor performance on a constrained system. 104
7.2 The effect of idle servers on performance. 105

7.2.1 Network Time Protocol daemon . 107
7.3 The Linux timer patch . 108

7.3.1 Analyzing the timer ticks . 110
7.4 QDIO and the dispatch queue. 112
7.5 Infrastructure cost . 114

7.5.1 Formatting disks . 115
7.5.2 Installing new systems . 115
 Contents v

7.6 Performance effect of virtual processors. 120
7.6.1 Assigning virtual processors to a Linux guest 121
7.6.2 Measuring the effect of virtual processors 121

Chapter 8. Tuning DASD performance for z/VM Linux guests 125
8.1 Factors that influence DASD I/O . 126

8.1.1 General DASD I/O recommendations . 127
8.2 Using VM DIAGNOSE I/O . 129
8.3 Comparing Diagnose and ECKD I/O . 130
8.4 Comparing ESCON and FICON performance. 133

8.4.1 Measuring ESCON and FICON for a single DASD device 135
8.4.2 Measuring ESCON and FICON for multiple DASD devices 136

8.5 Data caching and bdflush . 137
8.5.1 Parameters for bdflush . 137

Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking. . . 143
9.1 Comparing the CPU time cost of routing. 144
9.2 The effect of bandwidth on routing costs. 146
9.3 QDIO optimizations for z/VM. 150
9.4 Memory costs associated with QDIO . 152
9.5 Comparing CPU cost by network type . 153

Appendix A. WebSphere Performance Benchmark Sample workload . . 155
WebSphere Performance Benchmark Sample . 156
WebSphere Performance Benchmark Sample deployment options 157

Appendix B. Mstone workload generator . 159
Mstone overview . 160
Operation of the Mstone workload . 162

LDAP routing in sendmail . 163
Configuring the Mstone client. 164
Configuring the example.com domain . 164
Populating the LDAP database . 168

Appendix C. Performance Toolkit for VM . 171
Linux monitoring with the Performance Toolkit for VM. 172

Abbreviations and acronyms . 175

Related publications . 177
IBM Redbooks . 177

Other resources . 178
Referenced Web sites . 178
How to get IBM Redbooks . 180
Help from IBM . 180
vi Linux on IBM ^ zSeries and S/390: Performance Measurement and Tuning

Index . 181
 Contents vii

viii Linux on IBM ^ zSeries and S/390: Performance Measurement and Tuning

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
developerWorks®
DirMaint™
ECKD™
Enterprise Storage Server®
ESCON®

™
^™

eServer™
FICON™
IBM®
ibm.com®
RAMAC®
Redbooks™
Redbooks (logo) ™
RMF™

S/390®
TotalStorage®
VM/ESA®
WebSphere®
z/OS®
zSeries®
z/VM®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
x Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Preface

This IBM® Redbook discusses performance measurement and tuning for Linux
on IBM ^™ zSeries® and S/390®. It is intended to help system
administrators responsible for deployment on Linux for zSeries understand the
factors that influence system performance when running Linux as a z/VM®
guest.

We consider performance measurement and tuning at both the z/VM and Linux
level. Analysis of the memory, processor, DASD, and networking subsystems
are provided. Whenever possible, we make tuning recommendations.
Measurements are provided to help illustrate what effect tuning controls have on
overall system performance.

The system used in this writing the redbook is an IBM ^ zSeries 900
(z900) running z/VM Version 4.3 in an LPAR. The Linux distributions used in this
redbook include Red Hat Version 7.2 for zSeries (based on a Linux 2.4.9 kernel)
and SuSE SLES7 (based on a Linux 2.4.7 kernel). With the exception of 4.2,
“Exploiting the shared kernel” on page 37, the examples in this redbook use the
Linux kernel as shipped by the distributor.

The z900 is configured for:

Main memory 3 GB

Expanded storage 256 MB

Minidisc cache (MDC) 512 MB

Total LPARs 15

Processors Two Integrated Facilities for Linux (IFLs) dedicated to
the logical partition (LPAR)

The direct access storage device (DASD) storage used in producing this redbook
are RAMAC® Virtual Array (RVA) units.

The intent of this redbook is to provide guidance on measuring and optimizing
performance using an existing zSeries configuration. The examples are intended
to demonstrate how to make effective use of your zSeries investment. The
workloads used are chosen to exercise a specific subsystem; any measurements
provided should not be construed as a benchmark.
© Copyright IBM Corp. 2003. All rights reserved. xi

In developing this redbook, we use two performance monitoring tools designed
for z/VM and z/VM Linux guests:

� ESALPS by Velocity Software

� OMEGAMON for VM by Candle Corporation

Similar performance monitoring function is available from IBM using the IBM
Performance Toolkit for VM (Virtual Machine), an optional priced feature of z/VM
4.4 (5739-A03). This program can be used to monitor VM system performance
and analyze bottlenecks. It can be used as a real-time performance monitor and
also for analysis of history and trend files of accumulated performance data. As a
real-time monitor, the toolkit provides displays of VM CPU, LPAR, channel, and
I/O performance, as well as resource consumption, response times, and
communication rates. When installed and configured for Linux monitoring (see
Appendix C), the Performance Toolkit for VM can report Linux-specific
performance data, including Apache request rates and size, and also Linux CPU
utilization, Linux memory utilization, Linux network activity, and Linux file system
usage.

ESALPS overview
ESALPS, the Linux Performance Suite, is a suite of products provided by
Velocity Software. The products that make up the suite include:

� ESAMAP
The VM Monitor Analysis Program, providing performance reports on all
aspects of VM/ESA® and z/VM performance.

� ESAMON
The VM Real Time Monitor, providing real-time analysis of performance.

� ESATCP
The network and Linux data collection program.

� ESAWEB
A very fast VM-based Web server.

In addition to the four products, ESALPS provides a Web-based interface to view
performance data through a Web browser and many control facilities.
xii Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Monitoring requirements
There are many requirements for data collection met by ESALPS. Data is
provided for:

� Capacity planning
Long term data in the form of a performance database (PDB) is needed as
input to long term capacity planning and trend analysis. Full historical data
functions are provided with collection and many forms of data extraction tools.

� Performance analysis
Trend data enables an analyst to detect performance changes in any of
thousands of potential problem areas. The performance database allows
analysts to determine what of many potential changes occurred in the
system. Reporting on specific periods of time can be performed, enabling an
in-depth performance analysis of performance problems.

� Real-time performance
Beyond the traditional “entry level” real-time performance reporting of the top
users and system utilization, real-time performance analysis is provided for all
subsystems, user activity, and Linux (and many other platforms) servers.
Network data is also provided real time.

� Linux data
With the advent of virtual Linux server farms on z/VM, performance data is
required.

Standard interfaces
ESALPS uses standard interfaces for all data collection. The advantage to using
the standard interfaces provided is that when there are a multitude of releases
and distributions available, the standard interfaces provide consistent data
sources. Supported interfaces include:

� z/VM provides a “monitor interface” that has been available since 1988. Since
then, this interface has provided a consistent view of performance of VM
systems.

� Network performance is collected using simple network management protocol
(SNMP), the standard for network management.

� NETSNMP, an open source software package, provides host data for Linux
and other platforms.

� VM application data interface is used by applications to insert data into the
monitor stream consistent with the standard monitor interface. ESATCP uses
this interface to ensure consistent data collection that allows full integration of
Linux and VM data.
 Preface xiii

Performance database
ESALPS provides both real-time data and historical data for in-depth analysis.
The performance data is collected daily with a one minute granularity based on
the monitor interval. A longer term archive is collected, usually with a granularity
of 15 minutes. This performance database (PDB) includes VM data, Linux data,
and network data.

Real-time monitoring with ESAMON
ESAMON uses:

� Historical reporting
� Linux reporting
� Network reporting

Velocity Software has been in business since 1988 supporting the VM
environment. With a focus on VM, and now z/VM, Velocity Software added
TCP/IP network analysis and then Linux, Microsoft Windows NT, Sun, and other
platforms to the product data collection facilities.

OMEGAMON for VM
OMEGAMON for VM is a monitor for the z/VM operating system including 31-
and 64-bit z/VM images. It includes an interactive component, a background
collection component, and a historical reporting component called EPILOG.

The interactive OMEGAMON component consists of a 3270-based menu system
displaying current data for many major areas of interest, further menus
displaying historical data, many individual commands, the ability to issue VM
commands, the ability to take actions when events occur, and the ability to create
custom menus and displays. Also included is degradation analysis, which
analyzes the reasons the system, a virtual machine, or a group of virtual
machines is degraded and graphically displays the reasons.

The background collector is intended to run at all times. Its primary function is to
record data to DASD for later historical reporting, but it also collects some data
used by the interactive OMEGAMON user interface. Included with the collector
are tools to enable archiving or combining data, or both, to tape or disk.

EPILOG consists of many predefined reports and graphs, including bottleneck
reports, the ability to create custom reports, and the ability to export data in a
format suitable for inclusion in spreadsheets or other data reduction or analysis
tools.
xiv Linux on IBM ^ zSeries and S/390: Performance Measurement and Tuning

OMEGAMON XE for Linux
OMEGAMON XE for Linux is one of a family of Candle monitoring tools that
share a common infrastructure and user interface. It reports current data
interactively and includes a historical data collection facility.

The interactive user interface of OMEGAMON XE runs on a Windows
workstation and shows information for many monitored systems (which can be
any of the OMEGAMON XE family, not just Linux) in one place. (Data from
multiple systems can be combined using Candle’s related OMEGAMON DE

product.) The user interface consists of multiple workspaces, which are grouped
in several predefined sets, or which can be user defined. OMEGAMON XE can
take action or present advice, or both, when predefined or user-specified
situations occur. Data can be displayed as annotated tables, charts, gauges, and
so forth. Links from one workspace to another exist in the predefined workspaces
and can be created by a user as required.

OMEGAMON XE can create historical data for many of the data attributes it
collects. The user selects what data is to be recorded and how frequently.
Historical data can be collected either on each individual system, or centrally,
and can be periodically warehoused in a central database.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Gregory Geiselhart is a Project Leader for Linux on zSeries at the International
Technical Support Organization, Poughkeepsie Center.

Laurent Dupin has worked on z/VM and Linux performance since he joined the
EMEA zSeries Benchmark Center in Montpellier, France. He previously worked
for 10 years as a z/OS® and Sysplex specialist for IBM Global Services, and
became interested in Linux for zSeries during a two-year assignment at the
Boeblingen Lab in 1999.

Deon George is part of the IBM Software Group in Australia and has worked for
IBM for five years. He has been working with Linux for 10 years and with Linux
on S/390 for one year. He is a strong believer that Linux will be successful in the
enterprise and will work hard to make sure that any technology solution can
include Linux and also be successful.
 Preface xv

Rob van der Heij is a z/VM and Linux Systems Programmer with IBM in the
Netherlands. He has 20 years of experience with VM, but is still pretty much a
Linux newbie. His professional interest includes most that runs on z/VM, in
particular Linux. He is a regular speaker at IBM Technical Conferences and
participates in Linux and VM mailing lists.

John Langer is an Advisory Software Engineer from IBM Poughkeepsie,
working in the e-Business Performance group for z/OS Solution Evaluation Test.
He has been with IBM for 25 years, and has been involved with performance
testing for the last seven years. John has a degree in geology from the State
University of New York.

Graham Norris is an Englishman working as an Advisory Engineer for Candle
Corporation in California. He has 31 years of experience with IBM mainframes
and has also worked with many other systems, IBM and non-IBM, big and small,
during that time, but minimal Linux. His areas of expertise include system
automation, capacity planning, and performance measurement.

Don Robbins is a System Engineer for Velocity Software in the U.S. He has 18
years of experience in the VM, UNIX, and Linux fields. His areas of expertise
include being a system abuser on any platform that he has worked on, and as a
result, performance has been a very important part of his life.

Barton Robinson is president of Velocity Software, Inc. He started working with
VM in 1975, specializing in performance starting in 1983. His previous
publication experience includes the VM/HPO Tuning Guide published by IBM, the
VM/ESA Tuning Guide published by Velocity Software, and Linux on
IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299. He is the
author and developer of ESAMAP and ESATCP.

Gregory Sansoni is a Staff Software Engineer, working at IBM in Poughkeepsie.
He has five years of experience with zSeries performance testing and analysis,
with the past two years devoted to Linux on z/VM scalability and performance
topics. He holds a degree in Electrical Engineering from Penn State. His areas of
expertise include ornithology, with a concentration in the study of species
Eudyptula minor.

Steffen Thoss is a Linux for zSeries performance analyst in Germany. He has
four years of experience in the Linux for zSeries field. He holds a degree in
Computing Science from Berufsakademie Sachsen Dresden. His areas of
expertise include zSeries networking and Linux for zSeries performance.
Currently, he is working in the Linux for zSeries performance team at the IBM
Laboratory Boeblingen, Germany.
xvi Linux on IBM ^ zSeries and S/390: Performance Measurement and Tuning

Thanks to the following people for their contributions to this project:

Terry Barthel, Dave Bennin, Alison Chandler, Roy Costa, Al Schwab, Bill White
International Technical Support Organization, Poughkeepsie Center

Bob Haimowitz
International Technical Support Organization, Raleigh Center

Erich Amrehn, Utz Bacher, Klaus Bergmann, Dr. Juergen Doelle, Mario Held,
Martin Kammerer, Jens Osterkamp, Stefan Stahl, Holger Wolf
IBM Germany

Bill Bitner, Bill Cosnett, Dennis Musselwhite, Brian Wade
IBM Endicott

Rick Tarcza
IBM Poughkeepsie

Michel van Kruistum
IBM Netherlands

John P. Hartmann
IBM Denmark

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xviii Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Virtualization and server
consolidation

In this chapter, we discuss how to lower overall operating costs by running Linux
as a z/VM guest. We examine sharing real hardware resources using the
virtualization technology provided by z/VM. Then, we consider what can benefits
can be expected from performance tuning.

1

© Copyright IBM Corp. 2003. All rights reserved. 1

1.1 Server consolidation and virtualization
If we compare the raw cycle speed of a zSeries CPU with an average Pentium
processor, it is not hard to think that zSeries would have a disadvantage. In this
redbook, we use as an example an IBM WebSphere® workload generated by the
Trade 2 Benchmark. If that workload uses the full 100% of a modern PC for 24
hours a day, the same workload would easily use an entire zSeries CPU for the
whole day. Even though a zSeries machine has multiple CPUs, there will be
many situations where it still is not economical to host such a workload on
zSeries hardware. Fortunately, there are many other situations where using
zSeries does make a lot of sense.

Consider the case where the workload does not use the machine for the full 24
hours, but only for 12 hours. And imagine there is another similar workload using
the same amount of resources, but during the other 12 hours of the day. In that
situation, we can put both Linux systems on the same zSeries machine and let
them use the CPU cycles they need. When multiple Linux systems run on the
same zSeries machine, each Linux system is made to believe it has dedicated
access to a defined portion of the zSeries machine. The zSeries hardware and
z/VM take care of the smoke and mirrors without actually dedicating portions to
that Linux system.

Each Linux system runs in its own virtual machine. The characteristics of that
virtual machine (memory size, number of CPUs) define the hardware that Linux
sees. The tuning controls in z/VM specify how real hardware resources are
allocated to the virtual machine.

1.1.1 Virtualization of the CPU
CPU virtualization is accomplished by timesharing. Each Linux guest in turn
gains access to a CPU for a period of time. After that, the real CPU is free to run
the work of the other Linux system.

The cost of running both of these workloads on discrete servers is twice the cost
for running only one of them, but with zSeries, we run both workloads for the
price of one. Realistic business applications often even run far less than 50% of
the time, so that allows you to run even more of these workloads on the same
zSeries machine. The workload from these business applications is most likely
also not in a single burst per day, but in multiple short ones over the day. Given a
large enough number of servers and short enough intervals of workload, the
chances of spreading the total CPU requirements over the full day become
better.

Because the zSeries hardware is specifically designed to do timesharing, z/VM
can switch between tasks in a very cost effective manner.
2 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

1.1.2 Virtualization of memory
In addition to the CPU requirements discussed, the workload also has memory
requirements. The amount of memory needed for the Linux system to run is the
working set size. Virtualization of memory on z/VM is done through paging. The
Linux systems take turns using the main memory of the machine. Paging
volumes and expanded storage are used to hold the pages of the inactive Linux
systems so that they can be brought in by z/VM when needed.

The challenge for z/VM is to be able to bring in the working set of a Linux system
quickly enough that no time is wasted when a Linux system has work to do.

1.1.3 Levels of virtualization
The virtual machine provided by z/VM to run the Linux system is not the only
virtualization that is done. The Linux system itself runs multiple processes, and
the operating system allocates resources to each of these processes to allow
them to get their work done. Some of the processes running on Linux run
multiple tasks and allocate their resources to those tasks. And if the z/VM system
runs in an logical partition (LPAR), z/VM also uses only part of the real hardware.

These multiple layers of virtualization make it hard for an operating system to find
the best way to use the allocated resources. In many cases, tuning controls
(knobs) are available guide the operating system in this. Especially when the
operating system was not designed to run in a shared environment, some of the
knobs turn out to have surprising negative side effects.

1.2 Sharing resources
When we say a resource is shared, this can have different meanings:

� Multiple virtual machines take turns using a resource.
This is most obvious with sharing the CPU. z/VM dispatches virtual machines
one after the other on the real processor; each virtual machine believes it
“owns” the processor during its time slice. Main memory is also shared as
private pages in the working set of each virtual machine are brought in and
out of main memory as needed. Again, z/VM creates the illusion that a shared
resource is owned by a virtual machine. This type of sharing is not free; there
is an overhead in z/VM for switching back and forth between virtual machines.
This overhead increases as more virtual machines compete for the CPU.
 Chapter 1. Virtualization and server consolidation 3

� z/VM allows virtual machines to really share memory pages.
In this case, a portion of the virtual memory of the Linux virtual machine is
mapped in such a way that multiple virtual machines point to the same page
in real memory. In z/VM, this is done through named saved systems (NSS). It
is possible to load the Linux kernel in an NSS and have each Linux virtual
machine refer to those shared pages in memory, rather than require them to
have that code in their private working set. There is no additional cost for
z/VM when more virtual machines start to share the NSS. Note that not all
memory sharing is through NSS. The virtual machines in z/VM also compete
for main memory to hold their private working set. The NSS also holds only a
small part of the working set of the Linux virtual machine.

1.2.1 Overcommitting resources
It is possible to overcommit your hardware resources. When you run eight virtual
machines with a virtual machine size of 512 MB in a 2 GB z/VM system, you
overcommit memory roughly with a factor of two. This works as long as the virtual
machines do not require the allocated virtual storage at the same time.

Overcommitting resources is a good thing; we also do this in normal life. A
restaurant, for example, could be seating 100 people and allow every customer
to use the restrooms. The service can be provided with only a small number of
restrooms. The same applies to a cinema, but that needs more restrooms per
100 people because of the expected usage pattern. This shows how the
“workload” affects the ability to share a hardware resource. This example also
shows that partitioning your resources (separate restrooms for male and female
guests) reduces your capacity if the ratio between the two different workloads is
not constant. Other requirements such as service levels might require you to do
so anyway.

When the contention on the shared resources gets higher, chances of queueing
get larger. This is a consequence of sharing that can not be avoided. When a
queue forms, the requesters are delayed in their access to the shared resources.
Whether such a delay is acceptable depends on service levels and other choices
you make.

Overcommitting is necessary to share a resource. Big problems normally arise
when all resources in the system are being overcommitted.

1.2.2 Top speed versus mileage
Benchmarks traditionally deal with measuring the maximum throughput of an
application. You will see references to the maximum number of transactions per
second, the number of floating point operations per second, and the number of
megabytes transferred per second. The maximum throughput of the system is
4 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

seldom a good indication of how well a business application runs. The main
reason for measuring the maximum throughput is that it is relatively easy to do
the measurements.

With multiple virtual machines on z/VM competing for resources, we care much
more about the efficiency of the application. The metric for such a measurement
is a relation between resources, such as megabytes transferred per
CPU-second, or the number of CPU-seconds per transaction.

1.3 The art of tuning a system
A z/VM system offers many controls (tuning knobs) to influence the way
resources are allocated to virtual machines. Very few of these controls in z/VM
increase the amount of resources available. In most cases, the best that can be
done is take away resources from one virtual machine and allocate them to
another one where they are better used. Whether it is wise to take resources
away from one virtual machine and give them to another normally depends on
the workload of these virtual machines and the importance of that work.

Tuning rarely is a “one size fits all” approach. Instead, you will find that a system
tuned for one type of workload performs poorly with another type of workload.
This means you must understand the workload you want to run and be prepared
to review your tuning when the workload changes.

1.3.1 What tuning does not do
It is important to understand you can not run more work than you can fit in the
machine. If your zSeries machine has two CPUs and the workload you want to
run consists of three Linux virtual machines running WebSphere where each of
them runs a CPU for 100% all day, then it just will not fit. There is no z/VM tuning
that will make it fit (but there might be issues with the application to make it use
less than 100% all day).

When a zSeries machine has four CPUs and the workload consists of three
Linux virtual machines that each use a CPU for 100% all day, there is little to
tune. In this case, z/VM has sufficient resources to give each Linux virtual
machine what it requires (though one might want to look into changes to the
configuration that allow you to use all four CPUs and make things run faster).

1.3.2 Where tuning can help
So even when the different workloads add up to less than the total amount of
resources available, you might find you are still unable to run the workload. The
 Chapter 1. Virtualization and server consolidation 5

reason for that might be that the system is short on another resource. In such a
situation, proper tuning can make a difference.

Before tuning the system and workload, you need to understand what resource is
the limiting factor in your configuration. Tuning changes tend to fall into one of
these categories:

� Use less constrained resources
With a memory-constrained system, one option might be to reduce overall
z/VM memory usage by reducing the virtual machine size of Linux guests.

� Get a larger share of a constrained resource
In the case of a memory-constrained system, this can mean reserving some
memory pages for one particular Linux virtual machine, at the expense of all
others.

� Increase total available resources
The most obvious approach is to buy more hardware. However, additional
resources can be made available by stopping unneeded utility services.

Be aware that tuning does not increase the total amount of system resources. It
simply allows those resources to be used more effectively.

1.3.3 Exchange of resources
You can view tuning as the process of exchanging one resource for another.
Changes to the configuration make an application use less of one resource, but
more of the other. If you consider IT budget and staff hours as a resource as well,
even the purchase of additional CPUs is an exchange of one resource for the
other. When you tune your configuration to less of one resource, it should not be
a surprise that it will use more of another resource.

Consider for example the WebSphere Performance Benchmark Sample
workload (discussed in Appendix A, “WebSphere Performance Benchmark
Sample workload” on page 155). This is a three-tier configuration with a
front-end Web server, a WebSphere application, and a database back-end. You
can choose to run each tier in its own virtual machine or run them all in the same
virtual machine. Obviously, running three virtual machines increases some costs,
because as you duplicate the Linux operating system and infrastructure, you
have the additional cost of the communication between the virtual machines, and
you duplicate items that otherwise could have been shared. However, by using
three virtual machines, you can tune the resources given to each of these virtual
machines. You can make the Web server very small so that it can be brought into
memory easily and will run quickly. You can make the database virtual machine
larger so that it can cache a lot of the data and thus avoid some of the I/O to disk.
By using three different virtual machines, z/VM can dispatch them on real CPUs
independently. So the WebSphere server might be able to use more CPU cycles
6 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

because it does not have to wait for the storage of the database server to be
brought in.

By just recording the number of transactions per second on an unconstrained
system, you will never see these subtle details. And indeed, in an unconstrained
environment, it would be best to make everything as big as you can and drive it
as hard as you can. In real life however, very few of us can afford an
unconstrained environment.

1.3.4 Workload profile
Real business applications have a workload profile that varies over time. The
simplest form of this is a server that shows one or more peaks during the day. A
more complicated workload profile is when the application is CPU intensive
during part of the day, and I/O intensive during another part.

The most cost efficient approach to run many of these types of applications
would be if we could adjust the capacity of the server during the day. While this
might appear unrealistic, this actually is what we want z/VM to do. Portions of the
virtual machine are brought into main memory to run. Inactive virtual machines
are moved to paging space to make room.
 Chapter 1. Virtualization and server consolidation 7

8 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 2. z/VM memory and storage
concepts

This chapter introduces the z/VM memory and storage subsystem. Topics
include:

� The z/VM storage hierarchy

� Guidelines for allocation of z/VM storage

� z/VM use of memory

� Virtual memory as seen by Linux guests

� Influencing z/VM memory management

� Paging and spooling

2

© Copyright IBM Corp. 2003. All rights reserved. 9

2.1 The z/VM storage hierarchy
Both z/VM and Linux use what is known as virtual storage, or virtual memory.
Because “storage” is also used to refer to media other than memory, this section
uses the term “memory” to refer to electronic read-write memory, also known as
RAM, in which programs and its data are kept while a program is running. Note
that z/VM and Linux use different terms for the same thing: z/VM normally refers
to memory as storage.

Briefly, virtual memory is a method of allowing more programs and data to share
real (physical) memory at the same time than would otherwise be the case. At
any given moment, a program can only be accessing a very small amount of
memory; even over several seconds, a program is highly unlikely to access more
than a fraction of the total memory it has assigned to it. Virtual memory systems
use a mechanism called paging that tries to ensure that memory that is actively
being used is in real memory, and memory that is not being actively used is
temporarily saved to disk, and the real memory made available for other memory
that is actively in use. In z/VM and Linux, memory is managed in 4 K pages.

The z/VM storage hierarchy uses three types of memory:

� Main memory
Often referred to as main storage, this memory is directly accessible by user
programs. Programs execute in main memory. All I/O operations occur within
main memory. The size of main memory is limited to the amount physical
memory.

� Expanded storage
Expanded storage exists in physical memory, but is addressable only as
whole pages. Physical memory allocated as expanded storage reduces the
size of the main memory. Expanded storage is optional, and its size is
configurable.

Expanded storage acts as a fast paging device. As demand for main memory
increases, z/VM can page to expanded storage. Because it exists in physical
memory, paging to expanded storage can be much faster than paging to
direct access storage device (DASD).

� Paging space
Paging space resides on DASD. When paging demands exceed the capacity
of expanded storage, z/VM uses paging space.

The relationship between the types of z/VM storage is depicted in Figure 2-1 on
page 11.

Note: Expanded storage can also be used for minidisk cache (MDC).
10 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 2-1 The relationship between the types of z/VM storage

The combination of main memory, expanded storage, and paging forms the
z/VM virtual memory address space. As illustrated in Figure 2-1, pages move
within z/VM virtual memory to accommodate demand:

� z/VM guests run in main memory.
When dispatched, guests execute in main memory. Not all guest pages need
to reside in main memory when running. An inactive page can reside in
expanded storage or in paging space, or in both.

� Paging occurs between main memory and expanded storage.
As demand for main memory increases, z/VM might move inactive guest
pages to expanded storage. As those pages become active, z/VM moves
them back to main memory.

� Paging also occurs between main memory and paging space.
If no expanded storage is configured, z/VM pages between main memory and
paging space. If the paging demand exceeds the expanded storage capacity,
z/VM pages to and from main memory and paging space.

z/VM Storage

CPU works directly on pages in main
memory.

Pages can move from main memory to
expanded storage or paging space.

Pages move from expanded storage to
paging space only through main memory.

Pages never move from paging space to
expanded storage.

Paging space (DASD)

Expanded
storage

Main memory

CPU(s)
 Chapter 2. z/VM memory and storage concepts 11

� Pages do not move directly between expanded storage and paging
space.
Pages that move from expanded storage to paging space must first be
brought to main memory.

2.2 Guidelines for allocation of z/VM storage
As discussed in 1.2.1, “Overcommitting resources” on page 4, overcommitted
memory is a normal and desirable situation on z/VM. Memory overcommitment
allows z/VM to provide more total server utilization (and therefore, a lower overall
cost). The z/VM storage hierarchy is designed to optimize paging on an
overcommitted system.

With 64-bit support, the question arises of whether there is a need for expanded
storage (why not configure all physical memory as main memory instead). The
general recommendation is to configure z/VM with expanded storage.

Expanded storage often results in more consistent or better response time.
Factors that suggest expanded storage improves response time include:

� Paging will likely occur in a z/VM system.
The logic for allocating all physical memory as main memory is that paging
only occurs if there is a shortage of main memory, and therefore, expanded
storage only increases this possibility, However, overcommitment of memory
on z/VM is a normal and healthy practice. Therefore, it is better to prepare for
paging than attempt to prevent it.

� z/VM paging algorithms are tuned for expanded storage.
Moving pages from expanded storage to paging storage is much more
efficient than moving pages from main memory to paging storage.

� Parts of CP and its control blocks must reside below 2 GB.
Even with 64-bit support, parts of CP must still reside below the 2 GB line.
Guest pages being referenced by CP for some operations (such as I/O) must
reside below 2 GB. This can create contention for storage below 2 GB.
Contention below 2 GB can be identified by observing paging-to-paging
space at times when main memory above 2 GB is unused.

Note: When contention for memory below 2 GB is heavy, allocating 2 to 3
GB of expanded storage might help. For most systems however, 2 to 3 GB
of expanded storage is probably excessive.
12 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

As a general estimate, start with expanded storage configured to be 25% of the
physical memory allocated to z/VM. Systems with low contention below 2 GB can
reduce this ratio. For more tips about storage configuration, see the VM
Performance Tips page at:

http://www.vm.ibm.com/perf/tips/storconf.html

2.3 z/VM use of memory
Example 2-1 on page 14 shows a typical system storage map for a 64-bit z/VM
system.

Note: The part of VM that runs everything else is called CP, originally from the
term Control Program. Wherever you see “CP,” it refers to the core operating
system part of z/ VM.
 Chapter 2. z/VM memory and storage concepts 13

http://www.vm.ibm.com/perf/tips/storconf.html

Example 2-1 z/VM real storage map

________________ ZSMAP CMS OM/VM V610.99 CMS 02/24/03 09:49:27 B
> OMEGAMON for VM - Show layout of z/VM’s real storage
> S.C Help PF1 Back PF3 Up PF7 Down PF8
===
> REAL AND VIRTUAL STORAGE: Enter a selection letter on the top line.

>Primary: A-DPA B-Real storage *-SYS storage D-Paging E-VDISK
>Expanded: F-System info G-Block paging H-Page info I-Paging J-VDISK
>General: K-Shared segs L-Frame table M-Free by user N-Free map
===
> SYSTEM STORAGE MAP

 SYS >> z/VM V4 R3.0 SLU 0201
+ CPU: 2064 #0C0ECB-1C0ECB
 SMAP Major Area Size Minor Area Size Address Range
+ ---
+ Dynamic Area 1024M Dynam Paging 1024M 000000007FFFF000-00000000BFFFFFFF
+ ---
+ Fixed Stg 12M CP Frame Tbl 12M 000000007F3FF000-000000007FFFEFFF
+ ---
+ Dynamic Area 2031M Dynam Paging 36K 000000007F3F6000-000000007F3FEFFF
+ Trace Tbl 00 400K 000000007F392000-000000007F3F5FFF
+ Dynam Paging 36M 000000007CF98000-000000007F391FFF
+ Trace Tbl 01 300K 000000007CF4D000-000000007CF97FFF
+ Dynam Paging 1994M 0000000000539000-000000007CF4CFFF
+ ---
+ Fixed Stg 216K Chan Measure 216K 0000000000503000-0000000000538FFF
+ ---
+ Dynamic Area 2352K Dynam Paging 2352K 00000000002B7000-0000000000502FFF
+ ---
+ Fixed Stg 2780K CP Nucleus 2772K 0000000000002000-00000000002B6FFF
+ Prefix 8192 0000000000000000-0000000000001FFF
+ ===
+ Total online 3072M
+ ===

The areas of memory labelled Dynam Paging are the dynamic paging area (DPA),
the area memory used by VM for running guest operating systems such as
Linux. The other areas are used by VM itself.

Memory pages in the DPA are eligible to be temporarily stored elsewhere when
not actively used. If a page of memory is not located in DPA when required, a
demand page-in operation is initiated. If no free page exists in the DPA, VM first
pages out an inactive page. For efficiency, z/VM attempts to keep a pool of free
memory to reduce the number of demand page-outs (it is more efficient to
perform a sweep through memory and move several pages out at once).
14 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Whenever a virtual machine moves from the dispatch list to the eligible list, its
memory usage is examined. At that time, unused memory pages are trimmed
from the virtual machine to reduce its memory footprint.

As shown in Example 2-1 on page 14, storage above 2 GB (0x7FFFFFFF) is
entirely DPA. CP stores its control blocks and data below 2 GB. Do not assume
that this situation will remain unchanged in future releases of z/VM, because
limiting CP control blocks to addresses below 2 GB limits the abilities of z/VM.
For example, the frame table for 512 GB of real memory would require the entire
lower 2 GB, leaving no room for CP itself.

2.4 Virtual memory as seen by Linux guests
Virtual memory refers to the combination of main memory, expanded storage,
and paging space. Linux guests running under z/VM see memory as a
contiguous area extending from a low address of zero to a high address equal to
the virtual machine size. However, these pages might not be contiguous in z/VM
virtual memory, and might moved to accommodate demand. In fact, z/VM might
move a Linux guest’s memory pages out of main memory without notifying the
guest.

2.4.1 The double paging effect
z/VM memory management can lead to a situation referred to as double paging,
an effect illustrated in Figure 2-2 on page 16.
 Chapter 2. z/VM memory and storage concepts 15

Figure 2-2 Illustrating the double paging effect

Figure 2-2 depicts memory pages used by a Linux guest. The event sequence
leading to double paging is denoted by the numbered arrows:

1. Memory page B is paged out from z/VM main memory.
This memory page is mapped to a running Linux guest. After a period of
inactivity, z/VM moves the page to expanded storage.

The page is now available for demand page-in. z/VM has stolen the page, but
the Linux guest is unaware that the page-out occurred.

Note: In this example, we show the page-out occurring to expanded
storage. If no expanded storage was available, the page-out would occur
to paging space, an even more expensive operation.

z/VM expanded storage

z/VM main memory

.

.

.

Linux paging

A
B

D
C

A
B

D
C

B

B

1 23

Linux guest
16 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

2. Memory page B is paged back into z/VM main memory in response to a
page-out attempt by the Linux guest.
To alleviate a memory constraint, Linux identifies inactive pages (including
page B) to move to its swap device. The Linux guest page faults when
attempting to access page B. This, in turn, causes z/VM to page-in memory
page B to satisfy that request.

3. Linux completes its page-out attempt by moving page B to its swap
device.
After page B is paged back into main memory, Linux pages it out to its swap
device. In the end, z/VM has moved pages back into main memory simply to
allow Linux to move it out again.

Double page faults are not unique to Linux; z/OS running under z/VM can
experience the same effect. It is a result of two parties attempting to manage
memory. The solution is to ensure one party does not attempt to page:

� Make the Linux guest virtual machine size small enough for z/VM to
keep in main memory.
Double paging might still occur if many smaller Linux guests compete for
z/VM main memory.

� Make the virtual machine size large enough that Linux will not attempt
to swap.
This can lead z/VM to frequently page fault. This can be improved by
PAGEX/PFAULT, an asynchronous mechanism that allows z/VM to inform
Linux that a requested memory page is not resident in z/VM main memory.
On receiving this notification, Linux will attempt to dispatch another process.

2.4.2 Allocating memory to z/VM guests
z/VM virtual machines are assigned memory in the z/VM directory entry. Two
values in the directory entry specify memory for each user:

� First is the size of the guest’s virtual machine when it logs on.

� Second is the maximum size to which the virtual machine can change itself
after it has logged on.

If a guest changes its virtual machine size, the memory is reset, and the initial
program load (IPL) occurs again. As a result, changing a virtual machine size is
something usually done by a human user, not by an operating system running in
a virtual machine.
 Chapter 2. z/VM memory and storage concepts 17

Table 2-1 Storage allocation activities

2.4.3 VDISKs
VDISKs are virtual disks, emulated disks that z/VM creates in virtual memory.
Because they exist in main memory, VDISKs have very fast access times.
Typical VDISK usage for Linux guests is a fast swap device (see Chapter 5,
“Examining Linux swap device options” on page 47).

2.5 Influencing z/VM memory management
Several factors can influence how z/VM manages memory management. These
include:

� Ensure paging DASD, and the paths to them are not very busy.
This makes paging as fast as possible. Use multiple devices to permit
overlapped I/O. Use dedicated full packs for paging DASD, and be sure to
define enough so that you can do block paging.

� Use expanded storage for paging.
As discussed 2.2, “Guidelines for allocation of z/VM storage” on page 12,
expanded storage can improve overall performance.

Activity Command or directory entry

Initial storage allocation USER directory entry

Maximum storage allowed USER directory entry

Change storage allocation DEFINE STORAGE command

Modify initial storage settings DIRMAINT commanda

a. The Directory Maintenance Facility (DirMaint™) must be enabled in order to
use DIRMAINT commands.

Display storage allocation QUERY VIRTUAL command

Important: We do not recommend using VDISKs for a Linux swap device if
z/VM memory is constrained. The reason is that the page and segment tables
that define the VDISK address space are not pageable. These tables take up
8 KB per 1 MB of VDISK size. Instead, put the Linux swap device on a
minidisk that has a cached controller.
18 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

� Use shared segments.
Typically, Conversational Monitor System (CMS) is run from a named saved
system (NSS), but other operating systems can be too. The advantage is that
only one copy of the operating system resides in storage accessible to all
virtual machines. We discuss creation of a Linux NSS in 4.2, “Exploiting the
shared kernel” on page 37.

� Adjust SRM controls.
These control how z/VM manages virtual memory. System Resource
Management (SRM) parameters are discussed in 6.4.1, “Global SRM
controls” on page 89.

� Ensure system operation information records are properly retrieved and
stored.
z/VM allows for collection of various accounting, error, and symptom records
during operation. This data is stored in main memory until retrieved by
designated virtual machines. A new installation of z/VM typically defines
virtual machines that are automatically logged on at IPL:

– The DISKACNT virtual machine retrieves accounting records.

– The EREP virtual machine retrieves error records.

– The OPERSYMP virtual machine retrieves symptom records.

If these virtual machines stop retrieving the data, available system memory
can greatly reduced. Further details on these information collection facilities
can be found in z/VM V4R3.0 System Operation, SC24-6000.

� Use the CP SET RESERVED command to reserve pages for a guest.
The CP SET RESERVED command reserves real storage pages to a virtual
machine.

� Using V=F or V=R.
These VM configurations allow main memory to be dedicated to a guest
operating system; guest virtual machine memory pages reside permanently in
main memory. The V=F option is only available if the hardware processor is
IMLed in “basic” ESA/390 mode and not in LPAR mode.

Although these factors will influence virtual memory management, not all can be
considered beneficial. In general, options that enable resource sharing are
recommended for tuning overall system performance.

Important: There are limitations and restrictions associated with V=R and
V=F. Both can adversely affect overall system performance.
 Chapter 2. z/VM memory and storage concepts 19

2.6 Paging and spooling
z/VM utilizes specially allocated DASD space for system storage that is available
to all virtual machines running within that system. This DASD storage is owned
and controlled by the system (CP) and has distinct uses.

As already discussed, paging DASD storage is utilized for virtual machine paging
along with main memory and expanded storage. Paging needs to be as fast as
possible; distributing paging DASD space across numerous devices and
channels is suggested. Because the data in page storage is temporary, all the
paging data is discarded when z/VM is shut down.

Spool space is used to store data that is common to all virtual machines.
Because z/VM simulates an environment of independent operating systems,
each of these virtual machines has a designated reader, punch, and printer, just
like the computer systems of old. Data sent to a virtual machine will reside in the
reader until deleted or “read” into a user’s minidisk, much like a mail in-box. Data
that is created as output is directed to the virtual printer or to the virtual punch.

Spool space is also used for executable data or systems stored for access of all
virtual machines, such as NSS files. This creates a common location for system
code, rather than each virtual machine requiring individual storage space.
Because the contents of spool space is valid data, it is preserved across z/VM
shutdowns and IPLs.

Along with DASD storage that is owned by specific virtual machines (better
known as minidisks), z/VM allows for temporary minidisk space. This space can
be allocated as needed by a virtual machine from the tdisk storage created on
the system. This is meant to only hold data that is being processed or does not
need to be is retained. When z/VM is shut down, all data in tdisk storage is
discarded.

Note: While dedicated resources can be useful in some specific system
designs, their use should be carefully considered before deployment.
Dedicated virtual memory management options include:

� Using the CP SET RESERVED command.

� Using V=F or V=R.

This redbook concentrates on methods of resource sharing. Dedicated
resources cannot be recommended.
20 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 3. Linux virtual memory
concepts

In this chapter, we discuss how Linux uses virtual memory. We present Linux
memory management concepts and consider how these concepts affect Linux
guests running under z/VM. Topics include:

� Components of the Linux memory model

� Linux memory management

� Observing Linux memory usage

� Illustrating Linux aggressive caching

� Conclusions for sizing z/VM Linux guests

3

© Copyright IBM Corp. 2003. All rights reserved. 21

3.1 Components of the Linux memory model
We begin examining Linux memory by looking at the components of memory
allocation.

3.1.1 Linux memory
Linux manages its memory without regard to the fact that it is running in a z/VM
virtual machine. The Linux kernel uses an “always full” concept of memory
management. It attempts to load as much information (applications, kernel,
cache) into its perceived memory resources as possible.

When Linux boots, one of its first tasks is the division and allocation of memory
resources. Memory is divided into three main components:

� Kernel memory
Kernel memory is where the actual kernel code is loaded, and where memory
is allocated for kernel-level operations. Kernel operations include:

– Scheduling
– Process management
– Signaling
– Device I/O (including both to disk and to network devices)
– Paging and swapping

� User memory
User memory is where all application code is loaded.

� Buffer and cache memory
The rest of the memory is used for caching both I/O and file system data. In
the Linux 2.4 kernel, two types of caches are used:

– Buffer cache
The buffer cache contains the buffers Linux uses during handling of I/O
requests.

– File system cache
The file system cache contains data from the files in the Linux file system
(including the actual content of the files themselves). Typically, the bulk of
Linux caching is done in the file system cache.

Buffer and file system cache are intended to speed overall system
performance by reducing I/O operations (which are inherently slower than
memory access).
22 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

3.1.2 Linux swap space
Linux typically asks for the creation of a swap device during initial installation of a
system. For periods of high memory demand, Linux will temporarily move less
frequently accessed memory pages to its swap devices. The swapped memory
pages then become available for use. When a memory page residing on a swap
device is accessed, Linux moves it back into an available real memory page.
Options for defining swap space for Linux on zSeries is discussed in Chapter 5,
“Examining Linux swap device options” on page 47.

Swapping versus paging
Swapping is the process of moving an entire address space to a swap device.
Paging is the process of moving pages of memory to a swap device. In the past,
a swap device was used for swapping. Because of its inherent inefficiency
(swapping requires frequent, expensive context switches), swapping has been
replaced with paging. Although Linux utilizes a paging algorithm, the name swap
device has been retained.

3.2 Linux memory management
Linux memory is divided into pages, and each page is 4096 bytes in size. It is the
responsibility of the Linux memory manager to control usage of these pages. A
counter is maintained for each page and is used to determine whether to keep
the page in real memory.

Portions of memory are scanned periodically to check current page usage:

� When the virtual memory scanner locates pages that can be removed from
main memory, a counter on those pages is decreased by dividing the counter
value by 2 (an exponential decline).

� When the scanner locates pages that should not be removed from memory
(because the page was recently accessed), the page counter is increased by
a constant value.

Note: Linux uses an aggressive caching policy intended to reduce I/O when
allocating main memory; the theory being that memory is better utilized as
cache, rather than leaving it unused and available. This policy is illustrated in
3.4, “Illustrating Linux aggressive caching” on page 30.

Note: Do not enable MDC on Linux swap minidisks. The read ratio is not high
enough to overcome the write path length penalty.
 Chapter 3. Linux virtual memory concepts 23

Eventually, less recently accessed pages acquire a lower counter value, and
more recently accessed pages acquire a higher counter value. The counter value
is used by the memory manager during page cleaning.

3.2.1 Page cleaning
Linux memory pages are cleaned up (swapped out) when:

� The kswapd kernel thread runs.
This thread wakes up once a second to check the number of free page
frames. If the number is below a threshold, inactive pages are moved to a
swap device.

In some Linux kernels, the kswapd thread also wakes up every five minutes
to clean inactive pages from the buffer cache and inode cache.

� A process requests more memory than is currently available.
The kswapd thread runs if a memory request cannot be fulfilled from the
available memory pool. Less recently accessed pages are moved to the swap
device in order to free the required memory.

Thrashing occurs when not enough inactive pages are available to satisfy a
memory request. In this case, Linux spends more time moving pages to and
from the swapping device than running user processes.

Figure 3-1 on page 25 illustrates the effect of the Linux page cleaner.
24 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 3-1 Illustrating the effect of page cleaning

In Figure 3-1, we see CPU utilization for an idle Linux guest plotted over time.
The spike in CPU utilization at five minute intervals is due to the kswapd kernel
thread performing its periodic memory cleanup.

3.3 Observing Linux memory usage
For a quick look at how Linux allocates memory, we use the Linux free -k
command (the -k option reports memory size in kilobytes). Example 3-1 on
page 26 illustrates the memory usage of a 128 MB virtual memory Linux guest.

1 6 11 16 21 26

(min)
Elapsed time

1.4

1.5

1.6

1.7

1.8

1.9

2
2.1

2.2

2.3
(s

ec
)

C
P

U
 t

im
e

Page cleaner
 Chapter 3. Linux virtual memory concepts 25

Example 3-1 Observing Linux memory usage using the free command

$ free -k
 total used free shared buffers cached
Mem: 121276 50768 70508 0 4832 26944
-/+ buffers/cache: 18992 102284
Swap: 0 0 0

Important points to note in Example 3-1:

� The total memory (121276 kB) is less than the total virtual memory size
allocated to the Linux guest (128000 kB). The difference (6724 kB) is the size
allocated to the kernel.

� The total memory (121276 kB) is equal to used memory (50768 kB) plus free
memory (70508 kB).

� The used memory (50768 kB) is equal to buffer (4832 kB) plus cached
memory (26944 kB) plus used buffers/cache memory (18992 kB).

� The used buffers/cache memory (18992 kB) plus free buffers/cache memory
(102284 kB) is equal to total memory (121276 kB).

� The free buffers/cache memory (102284 kB) is equal to free memory (70508
kB) plus buffer memory (4832 kB) plus cache memory (26944 kB).

Although there is 102284 kB “free” memory available, Linux expects applications
to use only 70% (70508 / 102284). Linux expects to use the remainder as
buffer/cache memory.

3.3.1 Kernel memory usage at system boot
To examine kernel memory usage at system boot, we use the demsg command,
as illustrated in Example 3-2.

Example 3-2 Memory usage by the kernel at system boot

$ demsg | less
.
.
Memory: 120188k/131072k available (1719k kernel code, 0k reserved, 843k data, 64k init)
Dentry-cache hash table entries: 16384 (order: 5, 131072 bytes)
Inode-cache hash table entries: 8192 (order: 4, 65536 bytes)
Mount-cache hash table entries: 2048 (order: 2, 16384 bytes)
Buffer-cache hash table entries: 8192 (order: 3, 32768 bytes)
Page-cache hash table entries: 32768 (order: 6, 262144 bytes)
.
.

26 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

In this example, we see Linux allocates inode and buffer cache at system boot.

3.3.2 Detailed memory usage reported by /proc/meminfo
To examine memory in detail, we query the /proc/meminfo kernel driver, as
shown in Example 3-3.

Example 3-3 Detailed analysis of Linux memory using /proc/meminfo

$ cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 124186624 48365568 75821056 0 4104192 25628672
Swap: 0 0 0
MemTotal: 121276 kB
MemFree: 74044 kB
MemShared: 0 kB
Buffers: 4008 kB
Cached: 25028 kB
SwapCached: 0 kB
Active: 27600 kB
Inact_dirty: 1436 kB
Inact_clean: 0 kB
Inact_target: 32768 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 121276 kB
LowFree: 74044 kB
SwapTotal: 0 kB
SwapFree: 0 kB

Explanations of the fields shown in Example 3-3 are as follows:

� MemTotal
The amount of RAM memory assigned to Linux, not including memory used
by the kernel. In Example 3-3, Linux runs in a 128 MB virtual machine;
however, only 121276 KB is available for user memory, buffers, and cache.

� MemFree
Reports the current amount of memory not in use by Linux.

� MemShared
This number is always zero in 2.4 kernels, because it is too expensive to
actually calculate it. If calculated, it would report the sum of memory shared
between processes.

� Buffers
Reports the size of memory allocated to I/O buffers. Buffers hold data
accessed from block devices.
 Chapter 3. Linux virtual memory concepts 27

� Cached
Reports the size of memory allocated to cache. Caches hold data accessed
from files.

� SwapCached
Reports the size of cache memory swapped out to swap devices.

� Active
Reports the size of active memory pages (pages that are frequently
accessed).

� Inact_dirty
Reports the size of dirty inactive memory pages:

– Inactive pages are less frequently accessed relative to active pages (and
therefore are eligible for swapping should a memory shortage arise).

– Dirty pages are out of sync with respect to their backing store.

When memory is required, Linux chooses to steal Inact_clean pages before
swapping Inact_dirty pages.

� Inact_clean
Reports the size of clean inactive memory pages. Because clean pages are in
sync with respect to their backing store, Linux can reuse (steal) Inact_dirty
pages without having to write the page to a swap device.

� Inact_target
From reviewing the kernel source code, this number is described as the
“number of inactive pages we ought to have.” It is calculated as the sum of
Active, Inact_dirty, and Inact_clean divided by 5. This is most likely an
indication of when page cleaning should be performed.

� HighTotal
This value reports the amount of MemTotal not directly mapped into kernel
space. Its value varies based on kernel level. On zSeries, this value is always
zero because the kernel is loaded into its own distinct space (thus allowing a
31-bit address space for user memory). Documentation can be found in the
Debugging390.txt file in the kernel source documentation.

� HighFree
Reports the amount of MemFree not directly mapped into kernel space. The
value varies based on the kernel level. Its value is zero on zSeries.

� LowTotal
Reports the amount of memory that is directly mapped into kernel space. The
value varies based on the type of kernel used.

� LowFree
Reports the amount of free memory that is directly mapped into kernel space.
The value varies based on the type of kernel used.
28 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

� SwapTotal
Reports the amount of swap space available.

� SwapFree
Reports the amount of swap space not yet used.

Details about Linux Virtual Memory Management can be found at:

http://cs.uml.edu/~cgould
http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/

3.3.3 Using the vmstat command
The Linux vmstat command reports statistics about processes, memory, paging,
I/O to block devices, and CPU usage. The command syntax is:

vmstat [delay [count]]

Where:

delay The delay (in seconds) between updates
count The number of updates

Example 3-4 illustrates the vmstat command output.

Example 3-4 Using the vmstat command

vmstat 60 5
 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
18 0 6 27260 1020 60 724 3889 4981 4057 4981 0 653 82 18 0
13 0 11 27228 2036 64 772 3802 4868 3970 4868 0 633 82 18 0
16 0 8 27228 1200 64 740 3713 4802 3868 4802 0 621 82 18 0
17 0 7 27228 1332 64 888 3719 4703 3874 4703 0 676 82 18 0
14 0 10 27236 1796 60 724 3741 4798 3900 4798 0 633 82 18 0
#

Statistics reported by the vmstat command are grouped by type:

� procs
Process statistics are reported as the average number of processes in state:

r Number of processes waiting for run time

b Number of processes in uninterruptable sleep state

w Number of processes swapped out but otherwise runnable

� memory
Memory statistics are reported as the average amount of memory:

swpd Used memory size (KB)
 Chapter 3. Linux virtual memory concepts 29

http://cs.uml.edu/~cgould
http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/

free Unused memory size (KB)

buff Memory allocated to buffer cache (KB)

cache Memory allocated to file system cache (KB)

� swap
Paging statistics report average paging rates to swap devices:

si Paging rate from swap device to memory (KB/s)

so Paging rate from memory to swap device (KB/s)

� io
I/O statistics report the average I/O rate to block devices:

bi Number of blocks sent to a block device (blocks/s)

bo Number of blocks received from a block device (blocks/s)

� system
System statistics report average system activity:

in Number of interrupts per second (including clock interrupts)

cs Number of context switches per second

� cpu
CPU statistics report average utilization (as a percentage) of the CPU:

us Time spent in user mode

sy Time spent in kernel mode

id Time spent idle

3.4 Illustrating Linux aggressive caching
To illustrate Linux aggressive caching, we compare the memory usage of two
Linux guests, one running in a 64 MB virtual machine, the other in a 128 MB
virtual machine. Each runs the Mstone workload over an eight minute interval
(the Mstone workload is discussed in Appendix B, “Mstone workload generator”
on page 159). In Figure 3-2 on page 31, we examine memory usage over time.

Note: Be aware that when running as a z/VM guest, the numbers reported by
Linux utilities, such as vmstat, assume the guest owns 100% of the system
resources. In reality, these resources are shared by all virtual machines
running in the z/VM image. Linux resource counters report values relative to
the virtual machine in which they operate.
30 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 3-2 Linux memory usage in two Linux guests: 128 MB and 64 MB

1 2 3 4 5 6 7 8

(min)

Elapsed time

0

50

100

150
(M

B
)

M
em

or
y

cached
buffer
available
application
kernel

Memory usage
128 MB guest

1 2 3 4 5 6 7 8

(min)

Elapsed time

0

10

20

30

40

50

60

70

(M
B

)

M
em

or
y

cached
buffer
available
application
kernel

Memory usage
64 MB guest
 Chapter 3. Linux virtual memory concepts 31

Comparing the two Linux guests, we see a similar memory usage pattern: In both
cases, additional application memory is obtained at the expense of buffer and
cache memory. Reducing the virtual machine size by 50% reduced average
caching by 60%.

3.4.1 Choosing the correct virtual machine size
Figure 3-3 illustrates the effect of virtual memory size on performance.

Figure 3-3 Mstone performance for 32 MB, 64 MB, and 128 MB Linux guests

The Mstone benchmark is run against Linux guests with virtual memory sizes of
32 MB, 64 MB, and 128 MB. The total number of delivered messages is used to
gauge how well sendmail operates in the available Linux memory. From
Figure 3-3, we see there is no significant difference in running sendmail in a 64
MB or 128 MB virtual machine. However, in a 32 MB virtual machine, the
sendmail server becomes overloaded.

Note: Although the 64 MB guest required half the amount of memory, no
appreciable effect on server response time was noted.

LNXR01

LNXR02

LNXR03

LNXR04

LNXR05

LNXR06

LNXR07

Sendmail server

0
100
200
300
400
500
600
700
800
900

M
es

sa
ge

s
de

liv
er

ed

32 MB
64 MB
128 MB

Memory comparison
Mstone test
32 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

3.5 Conclusions for sizing z/VM Linux guests
The Linux memory model has profound implications for Linux guests running
under z/VM:

� z/VM memory is a shared resource.
Although aggressive caching reduces the likelihood of disk I/O in favor of
memory access, the cost of caching must be considered: Cached pages in a
Linux guest reduce the number of z/VM pages available to other z/VM guests.

� A large virtual memory address space requires more Linux kernel
memory.
A larger virtual memory address space requires more kernel memory for
Linux memory management.

When sizing the memory requirements for a Linux guest, choose the smallest
memory footprint that has a minimal effect on performance.

To reduce the penalty of occasional swapping that might occur in a smaller
virtual machine, use fast swap devices, as discussed in Chapter 5, “Examining
Linux swap device options” on page 47.

Important: Even though the 128 MB server does not require all that memory,
it will eventually appear to use it all. Its memory cost is four times that of the 32
MB server.

Tip: To determine the smallest memory footprint required, decrease the size
of the Linux virtual machine to the point where swapping begins to occur
under normal load conditions. At that point, slightly increase the virtual
machine size to account for some additional load.
 Chapter 3. Linux virtual memory concepts 33

34 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 4. Tuning memory for z/VM
Linux guests

In this chapter, we discuss tuning memory and storage for z/VM Linux guests.
We make memory tuning recommendations and show how to use a shared Linux
kernel to reduce memory usage. Topics include:

� Memory tuning recommendations

� Exploiting the shared kernel

4

© Copyright IBM Corp. 2003. All rights reserved. 35

4.1 Memory tuning recommendations
Because storage is limited, every option should be taken to reduce storage
requirements. To illustrate, if 100 servers each require 100 MB of memory (a
conservative estimate), 10 GB of real storage would be required. For 500
servers, the requirement would be 50 GB, pushing the limits of what is currently
available.

4.1.1 Reduce storage of idle servers
The cost of idle servers should be minimized. If the cost of an idle server is 100
MB of real storage, any option to reduce this is important.

Apply the timer patch to Linux guests. The default Linux scheduler wakes up 100
times per second. This does not allow idle servers to drop from queue, and VM
will not be able to trim the working sets of the idle servers. Install the timer patch
to reduce the storage of idle servers. The effect of the timer patch is examined in
7.3, ”The Linux timer patch” on page 108.

4.1.2 Reduce operational machine sizes
There are several opportunities for reducing the size of operational storage:

� Eliminate unneeded processes.
This might sound intuitive, but it needs to be done. Processes such as cron
should be eliminated when they do not perform useful functions. The impact
of running unneeded processes is demonstrated in 7.2, ”The effect of idle
servers on performance” on page 105.

� Divide large servers into smaller specialized servers.
Service machines can be tuned explicitly to perform a function. Linux servers
running many applications do not have these controls and can be difficult to
manage. Separating functions into smaller Linux guests can be done at little
cost; this can make the servers easier to tailor.

Note: For z/VM V4.3 and earlier, Linux machines with queued direct
input/output (QDIO) and channel-to-channel (CTC) devices (virtual as well as
dedicated) do not drop from queue even with the timer patch applied. The PTF
for APAR VM63282 is expected to resolve this problem. Until this PTF is
applied, use of Inter-User Communications Vehicle (IUCV) connections is
recommended for idle Linux guests running in a constrained environment. Be
aware that this PTF is not a substitute for the timer patch: Without the patch,
the PTF would be ineffective.
36 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

� Reduce machine size.
Minimize the virtual machine size to the lowest possible amount. Choosing
this amount requires research and testing. Because Linux will use all
available storage, defining a smaller machine size reduces real storage
requirements.

� Use a virtual disk for swap device.
Using a virtual disk as a swap device reduces the performance penalty of
swapping.

4.1.3 Reduce infrastructure storage costs
Several opportunities for reducing infrastructure storage costs exist:

� Use DIAGNOSE driver for DASD and MDC record cache.
Using a record-level minidisk cache will reduce the amount of storage
required for MDC. This requires the DIAGNOSE driver.

� Use shared storage.
Opportunities to share storage between many servers reduces real storage
requirements by the amount of storage shared by each server. In 4.2,
”Exploiting the shared kernel” on page 37, we show how to create a Named
Saved System (NSS) for Linux.

4.2 Exploiting the shared kernel
We believe it is important for the scalability of Linux on z/VM to share the Linux
kernel in NSS. However, although the ability to share the Linux kernel is part of
the official S/390 Linux source tree, a compiled kernel that exploits this feature is
not provided in the SuSE or Red Hat distributions.

To create a Linux NSS:

1. Compile the Linux kernel with the appropriate configuration options for NSS
enabled.

2. Define a skeletal system data file (SDF) for the compiled kernel using the CP
DEFSYS command.

Note: To create a Linux system that utilizes NSS support, you need to
recompile the Linux kernel. Be aware that your distributor might not support
systems running with a custom compiled kernel. Because this might be the
case, NSS support should be considered experimental. Depending on the
level of support required, this approach might not be appropriate for your
installation.
 Chapter 4. Tuning memory for z/VM Linux guests 37

3. Save the NSS-enabled kernel into the SDF using the CP SAVESYS
command.

The kernel configuration option CONFIG_SHARED_KERNEL is used to enable
the kernel code and data in memory segments. This is necessary because the
shared kernel code must be protected against updates from the Linux images
that use that kernel. In S/390 architecture, protection is assigned on a segment
basis (each segment is 1 MB in size).

As shown in the Linux memory map in Figure 4-1 on page 39, there is some
unused address space between the R/O and R/W portions of memory.

Note: When Linux is running in dedicated memory (for example, on an Intel
server or in a S/390 LPAR), this option would not be used; it would only waste
some of the memory dedicated for use by that server. However, when running
Linux in a virtual machine, there is very little cost involved with virtual memory
that is never used. It does not have to be provided by z/VM either (the lost
memory below 3 MB can be compensated for by giving the virtual machine
slightly more memory).
38 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 4-1 Linux memory map with shared kernel

4.2.1 Building an NSS-enabled Linux kernel
To build a Linux kernel for zSeries or S/390:

1. Obtain the kernel source code.

2. Obtain and apply the zSeries- and S/390-specific patches and Object Code
Only (OCO) modules.

3. Configure and build the kernel.

4. Copy the OCO modules to the appropriate locations in the file system.

5. Copy the new kernel to the /boot directory and run the zipl command.

Details about building a Linux kernel for zSeries can be found in Linux on
IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN,
REDP3596 at:

http://www.ibm.com/redbooks/abstracts/redp3596.html

Zero page, etc.

Kernel code (R/O shared)

Kernel data
(R/W)

Free to use

Unused

Unused

1 MB

3 MB

0 MB

VMSIZE
 Chapter 4. Tuning memory for z/VM Linux guests 39

http://www.ibm.com/redbooks/abstracts/redp3596.html

For NSS support, we need to enable the CONFIG_SHARED_KERNEL option. Using
the make menuconfig command, this option can be enabled by selecting General
Setup → VM shared kernel support. Example 4-1 shows the main screen with
General Setup option.

Example 4-1 Main screen: make menuconfig

Code maturity level options --->
Loadable module support --->
Processor type and features --->
General setup --->
SCSI support --->
Block device drivers --->
Multi-device support (RAID and LVM) --->
Character device drivers --->
Network device drivers --->
Miscellaneous --->
Networking options --->
File systems --->
Kernel hacking --->

Load an Alternate Configuration File
Save Configuration to an Alternate File

In the General setup menu shown in Example 4-2 on page 41, select the VM
shared kernel support option.
40 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 4-2 General setup: VM shared kernel support

[*] Fast IRQ handling
[*] Process warning machine checks
[*] Use chscs for Common I/O
<M> QDIO support
[] Performance statistics in /proc
[*] Builtin IPL record support
(vm_reader) IPL method generated into head.S
[*] Networking support
[*] System V IPC
[] BSD Process Accounting
[*] Sysctl support
<*> Kernel support for ELF binaries
< > Kernel support for MISC binaries
[] Show crashed user process info
[*] Pseudo page fault support
[*] VM shared kernel support
[*] No HZ timer ticks in idle
[] Idle HZ timer on by default

One should not underestimate the cost of compiling the kernel. On a zSeries
CPU, a complete build of the kernel may well use some 10 to 15 minutes of CPU
time. If you worry about the cost of an idle Linux virtual machine, a trimmed down
Linux image can run idle for more than a month on the amount of CPU cycles the
kernel build takes.

4.2.2 Defining a skeletal system data file for the Linux NSS
We examine the generated System.map file (shown in Figure 4-1 on page 39) to
identify the zero page, shared kernel code, and non-shared kernel data regions
in the constructed kernel.

Important: At least with the Linux 2.4.7 kernel sources, you should run a make
clean after you changed the CONFIG_SHARED_VM option. There appears to be a
problem with the build process in that it does not pick up the change.
 Chapter 4. Tuning memory for z/VM Linux guests 41

Example 4-3 Portions of the System.map to determine NSS configuration

00000000 A _text 1
00000298 t iplstart
00000800 T start
00010000 t startup
00010400 T _pstart
00011000 T _pend 2
00100000 T _stext 3
001000a8 t rest_init
001000fc t do_linuxrc

002d5918 A __stop___kallsyms
002d5918 A __stop___ksymtab 4
00300000 A _etext 5
00300000 d init_mmap
00300040 d init_fs
00300064 d init_files

00381700 d sockets_in_use
00381800 D softnet_data
00381900 D tcp_hashinfo
00382000 A __bss_start 6
00382000 b totalram_pages
00382004 b pseudo_wait_spinlock
00382008 b ext_int_pfault

We find the page range for each region based on the symbols that indicate the
start and end of the region.

From the System.map file, we identify:

� The region extending from _text (1) to _pend (2) is the zero page area. Using
addresses 0x00000000 and 0x00010fff, we find the page range is 0-10.

� The region extending from _stext (3) to the symbol immediately before
_etext (__stop__ksymtab 4) is the shared kernel code. Using addresses
0x00100000 and 0x002d5917, we find the page range is 100-2D5.

� The region extending from _etext (5) to _bss_start (6) is the non-shared
kernel data. Using addresses 0x00300000 and 0x00381fff, we find the page
range is 300-381.

Note: The address we use to locate the end of region is actually one byte past
the end of the region. To compensate, we subtract one byte in the calculation.
Because pages are 4 K in size, we calculate the page range by dropping the
last three nibbles from the address.
42 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

From these values, we construct the following DEFSYS command:

DEFSYS SUSE72 0-10 EW 100-2D5 SR 300-381 EW MINSIZE=24M MACHMODE XA,ESA

Parameters to the command are:

� SUSE72
The name to identify the NSS on IPL. By using different NSS names, you can
have different versions of the kernel saved as NSS on a VM system. The IPL
command identifies the NSS to be used by the virtual machine. Use this
ability with care. Sharing is most efficient (both in memory and system
administration) when many virtual machines share the same NSS.

� 0-10 EW
The page range for the zero page region. This region is copied to each virtual
machine in “exclusive write” mode (EW).

� 100-2D5 SR
The page range for the shared kernel code. Each virtual machine uses a
shared, read-only copy (SR).

� 300-381 EW
The page range for the private kernel data. Each virtual machine uses a
“exclusive write” copy.

� MINSIZE=24M
The minimum virtual machine size to use the NSS (only to prevent an IPL in a
virtual machine where it will not fit anyway).

� MACHMODE XA,ESA
The NSS can be IPLed in an XA or Enterprise Systems Architecture (ESA)
virtual machine.

4.2.3 Saving the kernel in the Linux NSS
The NSS-enabled kernel is saved into the skeletal SDF using the SAVESYS
command. As an example, we use the SAVELX EXEC script from the “How To
Use VM Shared Kernel” Support page at:

http://www.vm.ibm.com/linux/linuxnss.html

We modify the script to use the DEFSYS command parameters specific to our
kernel, as shown in Example 4-4 on page 44.

Note: The original values used for the DEFSYS command will work when
creating the SDF. However, these values create a larger NSS than required
(and therefore require more time to IPL).
 Chapter 4. Tuning memory for z/VM Linux guests 43

http://www.vm.ibm.com/linux/linuxnss.html

Example 4-4 SAVELX EXEC to save a Linux NSS

/* SAVELX EXEC */
/* get the system name and device to ipl */
parse arg lxname devnum
lxname = strip(lxname)
devnum = strip(devnum)
/* figure out the line end character */
'pipe cp q term | var termout'
parse var termout one myend three
myend = strip(myend)
/* figure out the storage size */ 'pipe cp q v stor | var storout'
parse var storout one two storsize
/* construct the defsys command */
DODEF = 'DEFSYS' lxname '0-10 EW 100-2D5 SR 300-381 EW MACHMODE XA,ESA'
dodef = dodef 'MINSIZE=' || storsize
say dodef
/* define the saved system */
dodef
/* arrange to stop the ipl processing at the appropriate spot, */
/* at which point a savesys will be issued */
SETSAVE = 'TRACE I R 010000 CMD SAVESYS' lxname
setsave = setsave || myend 'TRACE END ALL'
say setsave
setsave
doipl = 'i' devnum
say doipl
/* all set, issue the ipl */
doipl
exit

SAVELX EXEC requires two input parameters:

1. The name of the Linux NSS. In our example, we use the name SUSE72.

2. The DASD device on which the NSS-enabled kernel resides. This DASD
device should be defined for each virtual machine using the Linux NSS.

Assuming the NSS-enabled kernel resides on virtual device 201, we save Linux
using:

SAVELX SUSE72 201

4.2.4 Changing Linux images to use the shared kernel in NSS
To boot the Linux NSS in a virtual machine, issue the CP IPL command using the
name of the Linux NSS. In our example, the NSS is named SUSE72:

IPL SUSE72
44 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Be aware that although the NSS-enabled kernel is not booted from DASD, DASD
device numbers for virtual machines using the NSS must match the device
numbers used when the NSS was created. For example, if the NSS-enabled
kernel was created using a 201 disk as the root file system device, virtual
machines using the NSS must define a 201 disk with a root Linux file system.
 Chapter 4. Tuning memory for z/VM Linux guests 45

46 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 5. Examining Linux swap
device options

In this chapter, we examine options for setting up a Linux swap file. Topics
include:

� Linux swapping

� Swapping with ECKD discipline

� Impact of page-cluster on MDC hit rate

� The FBA discipline

� The DIAGNOSE discipline

� Using DIAGNOSE I/O for VDISK

� Using multiple VDISKs for swapping

In 5.7, “Linux swap device recommendations” on page 72, we make some
general recommendations for creating a Linux swap device. We note the DASD
storage devices used are RAMAC Virtual Array (RVA) units, not newer
generation IBM TotalStorage® Enterprise Storage Server® (ESS) units.

5

© Copyright IBM Corp. 2003. All rights reserved. 47

5.1 Linux swapping
Over time, a Linux system will use all the available memory. When it does not
need the memory to run processes, it will use all excess memory to cache data
from disk. The most obvious way to prevent this is not to give the virtual machine
more memory than it needs. Unfortunately, this is not always possible; memory
requirements vary over time as processes start and stop. Consequently, the
virtual machine will be either too big or too small.

When the virtual machine is too small for the workload, Linux will start to swap.
Pages from other processes are moved out and are stored on the Linux swap
disks to make room for the pages of the process that need to run. If Linux swaps
continuously, performance will be affected (this is what in z/VM would be called
paging). Occasional swapping is not necessarily bad; the acceptable amount of
swapping depends on the efficiency of the swapping mechanism.

To compare the efficiency of swap device types for Linux, we ran a number of
hogmem processes in a 32 MB virtual machine. The hogmem program is very
simple; the listing can be found in 5.8, “Program text for hogmem” on page 73. It
allocates the specified amount of virtual memory for the process and then
sequentially accesses each page. When the amount of memory allocated by
hogmem exceeds the free memory in Linux, some other things will be swapped
out by Linux. When we run enough hogmem programs in parallel and allocate
more virtual memory than what Linux can free up for us, constant swapping will
occur (which is bad in real life).

With three different driver disciplines in Linux, and two different types of disks, we
have four out of six combinations to try, as illustrated in Table 5-1.

Table 5-1 Driver disciplines for Linux swap devices

The DIAGNOSE discipline of the Linux driver uses a high-level block I/O protocol
(DIAG 250) to have CP perform the actual I/O operations when necessary. The
measurements will show the benefit of this protocol over the defaults chosen by
the driver. Before we go into detail about the DIAGNOSE discipline of the driver,
we first set the baseline for our benchmark by measuring the extended count key
data (ECKD) and fixed block architecture (FBA) discipline.

3390 VDISK

ECKD™ Default for 3390 N/A

FBA N/A Default for VDISK

DIAGNOSE MDC benefit Efficient
48 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

When we IPL the kernel in a 32 MB virtual machine, the output of free, as shown
in Example 5-1, suggests that more than half of that storage should be available
for processes.

Example 5-1 Available memory in an idle 32 MB virtual machine

 total used free shared buffers cached
Mem: 27748 15104 12644 0 576 7952
-/+ buffers/cache: 6576 21172
Swap: 143796 0 143796

The output shows that 12644 KB is not in use. Much of the buffers and cache
could be reclaimed by Linux when necessary, so 21172 KB is close to what we
can obtain without causing much swapping.

After starting a 20 MB process, we reexamine memory usage in Example 5-2.

Example 5-2 Available memory when running a single 20 MB process

 total used free shared buffers cached
Mem: 27748 25712 2036 0 48 1480
-/+ buffers/cache: 24184 3564
Swap: 143796 17192 126604

This shows that Linux did not give up all buffers and cache but decided to move
some things to swap instead:

� Linux obtained 10 MB from the free pool, leaving 2036 KB available to satisfy
sudden and urgent memory requests.

� The remaining 10 MB was obtained from buffers/cache and by memory freed
by swapping.

As shown in Example 5-3, vmstat reports very little swapping while the process
runs.

Example 5-3 Monitoring swap activity

 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
 1 0 0 23668 2036 28 828 2 2 5 2 0 11 99 1 0
 1 0 0 23668 2056 28 748 13 2 24 2 0 11 99 1 0
 1 0 0 23668 2052 36 748 0 0 1 0 0 10 100 0 0
 1 0 0 23668 2052 36 748 0 0 0 0 0 10 99 0 0

To cause some swapping, we must push a bit harder. If pushed hard enough, we
can obtain a fairly constant swap rate that can be studied with the different
measurement tools.
 Chapter 5. Examining Linux swap device options 49

5.2 Swapping with ECKD discipline
The output in Example 5-4 shows what happens when we increase the virtual
memory to 21 MB. Because our program walks through the allocated memory
sequentially, we force all pages from swap into memory, and out to swap again.

Example 5-4 Pushing Linux to swap

 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
 1 0 1 25464 1852 68 2304 482 686 528 687 0 66 40 1 59
 0 1 1 25564 2036 32 900 1972 1813 2052 1814 0 208 5 2 93
 0 1 0 25564 1912 48 1264 1844 1962 1993 1962 0 196 5 2 93
 0 1 1 25564 1960 132 2116 1796 1998 2051 2004 0 196 4 1 94
 0 1 0 25564 1840 48 1264 2042 2055 2171 2055 0 211 4 2 94
 0 1 1 25564 1836 48 1264 1951 1898 2079 1898 0 194 4 2 94
 0 1 0 25564 2000 36 1248 1780 2038 1907 2038 0 190 4 1 95
 1 0 1 25564 2036 40 1388 2070 1955 2218 1955 0 202 4 1 95
 0 1 0 25564 1828 48 1244 1750 2102 1879 2102 0 189 5 2 93
 0 1 0 25564 1696 36 1116 1810 1946 1932 1946 0 194 4 1 94

In Example 5-4, we note:

� Swap rate averages slightly less than 2 MB/s.
Swap rate is reported in columns si (memory swapped in from disk) and so
(memory swapped out to disk). These values are reported in terms of the
number of 1 KB blocks transferred.

� CPU utilization drops significantly once swapping begins.
CPU idle time (as reported in the id column) increases to 95% from its
previous value of 0%. This is not because the process suddenly became
more efficient; the process is simply suspended after a page fault.

Using only 5% of the CPU cycles in the previous example, we conclude that only
5% as much work is accomplished: Throughput is reduced to 5% or less due to
swapping.

Based on Linux measurements, we cannot determine if the 3 to 4 MB/s swap rate
is high; instead, we use z/VM measurements to make that determination.
Example 5-5 on page 51 shows the z/VM I/O rate attributed to the Linux guest.
50 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-5 Effect of MDC on Linux swapping

Screen: ESAUSR3 ITSO ESAMON V3.3 02/17 17:20-17:28
1 of 2 User Resource Utilization - Part 2 USER RMHTUX02 2064 C0ECB

 DASD MDisk Virt Cache I/O <---Virtual Device---->
 UserID DASD Block Cache Disk Hit Prty <----I/O Requests----->
Time /Class I/O I/O Hits I/O Pct Queued Cons U/R CTCA Other
-------- -------- ----- ----- ----- ---- ----- ----- ----- ----- ----- -----
17:28:00 RMHTUX02 2884 0 73 0 2.5 0 0 0 0 0
17:27:00 RMHTUX02 2811 0 89 0 3.2 0 0 0 0 0
17:26:00 RMHTUX02 2825 0 66 0 2.3 0 0 0 0 0
17:25:00 RMHTUX02 2660 0 322 0 12.1 0 0 0 0 0
17:24:00 RMHTUX02 2646 0 495 0 18.7 0 0 0 0 0
17:23:00 RMHTUX02 3022 0 579 0 19.2 0 0 0 0 0
17:22:00 RMHTUX02 3040 0 537 0 17.7 0 0 0 0 0
17:21:00 RMHTUX02 3137 0 673 0 21.5 0 0 0 0 0

In Example 5-5, we note:

� The 4 MB/s swap rate translates to approximately 50 I/Os per second.
The DASD I/O rate is the total number of reads and writes. Therefore, the 4
MB/s swap rate from Example 5-4 on page 50 translates to some 3000 I/Os
per minute, or 50 I/Os per second (from the 17:22 to 17:23 interval).

� Some 20% of swapping initially comes from the MDC.
Example 5-5 illustrates what happens when MDC is disabled for the swap
device. We see the MDC hit ratio drop from 20% to just 2% (be aware that
more recent intervals are shown toward the top of the listing). The 2% ratio
can be attributed to the hits against the root file system that resides on a
minidisk allocated on the same volume.

It might be somewhat surprising that MDC is not more effective in this case, even
though only 21 MB of data is involved. When allocating pages on the swap disk,
Linux tries to minimize seek distances. The effect for this workload is that the
area of active pages sweeps over the total swap device. So from a cache
point-of-view, the entire 140 MB of swap space is involved.

Tip: It is normally not wise to allocate the swap device of the Linux virtual
machine on the same volume that holds the data of that same virtual
machine. If you allocate them on different volumes, you spread the I/O and
can exploit multiple paths to the DASD controller.
 Chapter 5. Examining Linux swap device options 51

However, the VM MDC is a write-through cache. For write operations:

� If a track or block that exists in the cache is updated, the cache copy is first
updated. The underlying storage media is then written before the I/O
operation is declared complete.

� If the data to be written is eligible for MDC, but does not currently exist in the
cache, the data is written to the underlying storage media but is not added to
the cache.

Data is only added the cache when it is read from disk, not written to disk. In this
test, swapping does not reference the same page twice (a page is swapped in to
update its content from disk, a new page is then swapped out). Any benefit
derived from the MDC is due to the fact that the MDC is set for full track caching;
an entire track is read from disk when even a single block is requested. For this
case, swap pages that exist in the MDC were added when a page on the same
track was swapped in.

Now that we have determined how much z/VM I/O can be attributed to the Linux
guest, we next look at the device to determine how much more throughput is
possible. Example 5-6 shows the I/O measurements for the logical volume
containing the swap device.

Example 5-6 Linux guest swapping though ECKD discipline of the driver

Screen: ESADSD2A ITSO ESAMON V3.3 02/17 17:10-17:13
1 of 3 DASD Performance Analysis - Part 1 DEVICE 3752 2064 C0ECB

 Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
17:13:00 3752 LNXU4R 3390-3 94.1 50.6 50.6 18.6 18.6 0.2 1.2 17.2
17:12:00 3752 LNXU4R 3390-3 95.9 51.0 51.0 18.8 18.8 0.2 1.3 17.4
17:11:00 3752 LNXU4R 3390-3 95.5 50.5 50.5 19.3 18.9 0.3 1.3 17.3

We see the same 50 I/O operations per second as noted in Example 5-5 on
page 51; it appears there is little competition for the volume from other users.
This I/O rate has driven the DASD to 95% utilization; there is little chance of
driving it harder this way.

Note: As discussed in 3.1.2, “Linux swap space” on page 23, we recommend
disabling MDC for Linux swap devices.
52 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

5.2.1 Effect of the number of processes on Linux swapping
To get a better understanding of the relationship between the I/O rate and MDC
hit ratio observed in Example 5-5 on page 51, we design another experiment.
Once again, we use the hogmem program to stress Linux memory management.
For this experiment, we run three tests:

Test 1 x 21 MB One hogmem process, using 21 MB of memory

Test 3 x 7 MB Three hogmem processes, each using 7 MB of memory

Test 21 x 1 MB Twenty-one hogmem processes, each using 1 MB of
memory

For each test, we use a 200-cylinder disk used with the ECKD driver as a swap
device. Table 5-2 shows some of the disk I/O characteristics for our three
swapping experiments.

Table 5-2 Disk I/O metrics for the three tests

One of the interesting differences is the reduced disk response time. Because
the device utilization is close to 100%, there is a direct relation to the I/O rate as
well. When we look at the Linux swap rate, there is no direct relation (if anything,
the amount of data swapped by Linux decreases a bit where the I/O rate is
almost four times higher). The first conclusion must be that the “size” of each
DASD I/O in the Test 21 x 1 case apparently is less than of the Test 1 x 21.

Note: For a proper correlation of the I/O reported for the user and the device,
your favorite performance monitor might offer an option to do seek analysis.
This analysis can show the device I/O by minidisk. In our case, we use a
simplistic test with little activity by other users; this makes it easy to draw
conclusions.

Test 1 x 21 MB Test 3 x 7 MB Test 21 x 1 MB

Linux swap-in (KB/s) 1960 1927 1868

Linux swap-out (KB/s) 1940 1892 1605

DASD I/O rate (SSCH/s) 52.8 76.0 196

MDC hit ratio (%) 22.3 23.7 38.6

Device utilization (%) 95.1 99.5 99.2

Device response time (ms) 18.6 14.7 7.6
 Chapter 5. Examining Linux swap device options 53

Fortunately, VM provides options to study the I/O in more detail. During each
test, we take a short I/O trace using the TRACE IO 200 CCW PRINTER
command. This trace shows details for each I/O operation. The first part of one
“channel program” generated by Linux is shown in Example 5-7.

Example 5-7 Output of the TRACE IO command

-> 0020BDC0' SSCH B2333000 004C1694 CC 0 SCH 0004 DEV 0200
 CPA 00C68A90 PARM 004C1614 KEY 0 FPI C0 LPM F0
VDEV 0200 CCW 63400010 00C68A70
CCW 00C68A90 63400010 00C68A70 0000 63400010
 EXTENT 80CC0000 00000000 00220009 0022000A
CCW 00C68A98 47400010 00C68A80 0008 47400010
 LOCATE RECORD 0180000C 00220009 00210009 043B1000
CCW 00C68AA0 85401000 00741000 0010 85441000
 IDAL 780A1000
 IDAL 780A1800
CCW 00C68AA8 85401000 0115C000 0018 85441000
 IDAL 429D2000
 IDAL 429D2800
CCW 00C68AB0 85401000 01D76000 0020 85441000
 IDAL 342D2000
 IDAL 342D2800

Each channel program starts with a “define extent” and “locate record” channel
command word (CCW). These two define the area on DASD where data is read
or written. One CCW for each consecutive block read or written follows; the more
blocks read or written in a single I/O, the longer the channel program gets.

For each test, we capture 50,000 records of trace information and use a set of
CMS Pipelines filters to analyze the data. The easiest way to analyze the data is
to compute average channel program length and the read/write ratio. These
values are shown in Table 5-2 on page 53.

Table 5-3 Start subchannel (SSCH) count and read/write ratio

When we look at Table 5-3, we see that, for example, the length of write channel
programs changes much more than the length of read channel programs. This
means the average length does not help us a lot.

Test case Channel programs Blocks

Read Write Read/write Read Write Read/write

Test 1 x 21 MB 562 119 4.7 7300 6666 1.1

Test 3 x 7 MB 708 267 2.6 6799 6595 1.0

Test 21 x 1 MB 1277 786 1.6 5933 5326 1.1
54 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

From the same VM I/O traces, we can obtain even more detailed statistics, as
shown in the graphs in Figure 5-1 on page 55.

Figure 5-1 Distribution of channel program length

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > 16

Pages / SSCH

0

20

40

60

80

100
P

er
ce

nt
ag

e
of

 S
S

C
H

s

write
read

Distribution channel program length
1 x 21 MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > 16

Pages / SSCH

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 S

S
C

H
s

write
read

Distribution channel program length
3 x 7 MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > 16

Pages / SSCH

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 S

S
C

H
s

write
read

Distribution channel program length
21 x 1 MB
 Chapter 5. Examining Linux swap device options 55

For the Test 1 x 21 test case, we see that swap-in typically is done either as
single page I/O or with 16 pages in one I/O. For swap-out, the single page is
popular, but more than half of the channel programs is for more than 16 pages
(up to 128 pages per I/O).

With three processes running, we see more of the swap-in I/O gets shorter, and
the peak at 16 pages per I/O for read starts to shrink.

Another increase in the number of processes drastically changes the picture.
With 21 processes, there are hardly any swap-in I/Os of 16 pages. Both read and
write channel programs have been reduced to less than 8 pages.

Looking at the length of the channel programs, we can also explain the increased
MDC hit ratio, as reported in Table 5-2 on page 53. The VM minidisk cache was
configured in so called “full track mode,” which means that MDC reads the full
track from disk when the virtual machine wants to read something from the track.
Subsequent reads for data from that same track can then be satisfied from MDC.
Because the Linux dasd driver has no knowledge about the 3390 track geometry
(or rather, chooses to ignore that information) the Linux I/O is not aligned on
tracks (as z/OS normally does). On average, MDC will, therefore, read half a
track of data more on each read that Linux does. With the short channel
programs, it will frequently happen that the next read can completely be satisfied
from the excess data read with the previous I/O by MDC. This counts as an MDC
hit. The shorter the channel programs, the higher the MDC hit rate.

With the I/O trace from Example 5-7 on page 54, we can also determine which
disk blocks are read and written. The difference in reference pattern is very
obvious from the graphs in Figure 5-2 on page 57.
56 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 5-2 Swap device reference patterns

0 1000 2000 3000 4000 5000 6000

Time (s)

0

5

10

T
ho

us
an

ds

B
lo

ck
 n

um
be

r

read
write

Allocation on swap device
1 x 21 MB

0 1000 2000 3000 4000 5000 6000

Time (s)

0

5

10

T
ho

us
an

ds

B
lo

ck
 n

um
be

r

read
write

Allocation on swap device
3 x 7 MB

0 1000 2000 3000 4000 5000 6000

Time (s)

0

5

10

T
ho

us
an

ds

B
lo

ck
 n

um
be

r

read
write

Allocation on swap device
21 x 1 MB
 Chapter 5. Examining Linux swap device options 57

The first graphs clearly show that activity “sweeps” over the device. When a
block must be read from disk, there is little choice, but when a new block is
written to disk, Linux can pick any free spot on disk (with swapping to disk, every
block written is a new block). That new spot is allocated in a way that increases
the chances for Linux to write and read many consecutive blocks in a single I/O.
To minimize seek times, the algorithm apparently prefers to write blocks close to
where the last block was read (and where the “arm” is currently positioned). For
the first two reference graphs, there is still a pattern visible.

The last graph in Figure 5-2 on page 57 looks rather chaotic. This is probably
caused by the high number of parallel processes that all cause pages to be
swapped out and in. With such a high degree of multiprogramming, the allocation
strategy that Linux uses does not make it likely that blocks are read in the same
order as they were written.

On modern S/390 DASD, the seek times are not much of an issue anymore. This
makes the allocation strategy that Linux uses counter productive. Because the
dasd driver uses SSCH to do the I/O, MDC is unable to decide whether data in
cache remains valid. MDC, therefore, invalidates the tracks that are affected by
the write CCWs. So by writing on the same tracks as where the read activity is
happening, MDC is made less efficient.

5.2.2 Impact of page-cluster on MDC hit rate
The page-cluster value determines how many additional pages Linux will swap in
on a page fault (under the assumption the process will want the next pages as
well). Page-clustering is controlled by the /proc/sys/vm/page-cluster
pseudo-variable.

In Example 5-8 on page 59, we illustrate the effect of page-clustering. Before
starting the test, page-cluster size is set to one:

echo 1 > /proc/sys/vm/page-cluster

Between 19:19:00 and 19:20:00, the page-cluster size is set to four (its default
value):

echo 4 > /proc/sys/vm/page-cluster

Note: Swap activity as reported by vmstat showed no change during this
period.
58 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-8 Changed page-cluster size and MDC hit rate

Screen: ESAUSR3 ITSO ESAMON V3.3 02/17 19:15-19:21
1 of 2 User Resource Utilization - Part 2 USER RMHTUX02 2064 C0ECB

 DASD MDisk Virt Cache I/O <---Virtual Device---->
 UserID DASD Block Cache Disk Hit Prty <----I/O Requests----->
Time /Class I/O I/O Hits I/O Pct Queued Cons U/R CTCA Other
-------- -------- ----- ----- ----- ---- ----- ----- ----- ----- ----- -----
19:21:00 RMHTUX02 7809 0 3792 0 48.6 0 0 0 0 0
19:20:00 RMHTUX02 7822 0 3770 0 48.2 0 3 0 0 0
19:19:00 RMHTUX02 16199 0 10018 0 61.8 0 0 0 0 0
19:18:00 RMHTUX02 15935 0 9881 0 62.0 0 0 0 0 0
19:17:00 RMHTUX02 15737 0 9937 0 63.1 0 0 0 0 0
19:16:00 RMHTUX02 16400 0 10245 0 62.5 0 0 0 0 0

We note in Example 5-8:

� A higher DASD I/O rate and corresponding MDC cache hit ratio in the interval
19:16:00 to 19:19:00. The page-clustering value in this interval is set to 1.

� The DASD I/O rate and MDC hit ratio decrease dramatically at 19:20:00.
Beginning in this interval, the page-clustering value is returned to its default
value of 4.

This test shows:

� When the page-cluster value is small, Linux does many short I/Os.

� Entire tracks are read into the MDC, not simply pages.
The higher MDC hit ratio indicates that fetching an entire track from DASD
anticipates subsequent I/O access to that DASD device.

5.3 The FBA discipline
Many people today suggest to use z/VM Virtual Disk (VDISK) as the swap device
for Linux virtual machines. A VDISK is presented to the virtual machine as a fixed
block architecture (FBA) DASD device (a virtual device of type 9336). Under the
covers, the VDISK is an address space that lives in the z/VM main memory. The
virtual machine issues I/O instructions against the device, and CP implements
this by moving data between the virtual machine’s primary address space and
the VDISK address space.
 Chapter 5. Examining Linux swap device options 59

5.3.1 Advantages of a VDISK swap device
The advantages of VDISK are that a very large swap area can be defined with
very little expense. The VDISK is not allocated until the Linux server actually
attempts to swap. Figure 5-3 illustrates the effect a 100 MB VDISK has on
memory paging.

Figure 5-3 Paging with a 100 MB VDISK

The actual page cost of the VDISK amounted to 86 pages, of which 50 were
paged out. When it was needed, more was allocated. This is much different than
allocating a 100 MB real disk. Another large advantage of the virtual disk is that
when the virtual disk is used, it becomes paged in and becomes a very fast “data
in storage” type device.

Note: Ideally, one would expect that a real disk together with MDC could
achieve the same effect. As shown in 5.2, “Swapping with ECKD discipline” on
page 50, it does not work like that. MDC is a “write-through” cache, and the
virtual I/O operation does not complete before the data is written to the real
disk. Also, the data written to disk is not yet copied into MDC. Hence, MDC is
only effective when data is read the second time after writing it.

Screen: ESAVDSK Velocity Software, Inc. ESAMON V2.2 03/15 12:14-
 <--pages--> DASD X-
 Resi- Lock- Page Store
Time Owner Space Name dent ed Slots Blks
-------- -------- ------------------------ ----- ----- ----- -----
12:15:01 LINUX001 VDISK$LINUX001$0202$0009 36 0 50 0
12:16:01 LINUX001 VDISK$LINUX001$0202$0009 36 0 50 0
12:17:01 LINUX001 VDISK$LINUX001$0202$0009 173 0 50 0
12:18:01 LINUX001 VDISK$LINUX001$0202$0009 293 0 35 0
12:19:01 LINUX001 VDISK$LINUX001$0202$0009 293 0 35 0
…..
12:39:01 LINUX001 VDISK$LINUX001$0202$0009 259 0 35 0
12:40:01 LINUX001 VDISK$LINUX001$0202$0009 259 0 35 0
12:41:01 LINUX001 VDISK$LINUX001$0202$0009 207 0 86 0
12:42:01 LINUX001 VDISK$LINUX001$0202$0009 207 0 86 0
12:43:01 LINUX001 VDISK$LINUX001$0202$0009 13 0 280 0
12:44:01 LINUX001 VDISK$LINUX001$0202$0009 13 0 280 0
12:45:01 LINUX001 VDISK$LINUX001$0202$0009 13 0 280 0
60 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

5.3.2 Enabling an FBA VDISK
Because a VDISK appears as an FBA device to Linux, the dasd driver uses the
“FBA discipline” by default for both SuSE and Red Hat distributions. When
booting Linux with a 64 MB VDISK, the console messages in Example 5-9 show
the FBA discipline is registered for the device.

Example 5-9 Booting Linux with FBA discipline

dasd(fba):FBA discipline initializing
dasd(fba):0207 on sch 4: 9336/10(CU:6310/80) 64MB at(512 B/blk)
dasdh:(nonl)/ : dasdh dasdh1
dasd(fba):We are interested in: Dev 9336/00 @ CU 6310/00
dasd(fba):We are interested in: Dev 3370/00 @ CU 3880/00
dasd:Registered FBA discipline successfully

Just as with the ECKD swap device, the VDISK must be initialized with the
mkswap command before the swapon command can use the device. Because the
contents of the VDISK are not preserved after logoff of the virtual machine (the
data on VDISK is volatile), the mkswap command must be issued each time you
start the virtual machine.

There are at a few different ways to do this:

� Modify the init scripts in your Linux system to run the mkswap command early
in the boot process. The disk can then be picked up automatically by the
swapon command when Linux processes the /etc/fstab file. The swapon
command can be issued manually if required.

� First IPL CMS in the Linux guest, and then use CMS tools to initialize the
VDISK. This enables Linux to see the VDISK as a swap device just as if a
mkswap command was already issued. If you need to use CMS to couple
virtual channel-to-channels (CTCs), this may be a good option.

� Use some other virtual machine to link to all the VDISKs so that CP will retain
them after the Linux guest is logged off. You still need some process to
initialize the disks after a z/VM IPL. This approach is probably not very
attractive because it will cause CP to retain more VDISKs than you need and
put an additional burden on the paging subsystem.

The choice for initializing the disk in Linux or in CMS probably depends on the
skills available and whether you are willing to change things in Linux. Neither the
SuSE nor the Red Hat installers currently use VDISK as the swap device, but if
you prepare the disk on CMS in advance, Linux will pick it up automatically.
 Chapter 5. Examining Linux swap device options 61

5.3.3 Swapping with FBA discipline
For the FBA VDISK, we did the same experiment as with the ECKD swap disk.
Three hogmem processes were running, each allocating 7 MB of virtual storage
(and we had to add one more for 1 MB to push it harder). Example 5-10 shows
the reported swap rate from vmstat.

Example 5-10 The vmstat output of swapping to FBA disk

S vmstat 60|timestamp
18:49:00 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
18:52:59 18 0 6 27260 1020 60 724 3889 4981 4057 4981 0 653 82 18 0
18:53:59 13 0 11 27228 2036 64 772 3802 4868 3970 4868 0 633 82 18 0
18:54:59 16 0 8 27228 1200 64 740 3713 4802 3868 4802 0 621 82 18 0
18:55:59 17 0 7 27228 1332 64 888 3719 4703 3874 4703 0 676 82 18 0
18:57:00 14 0 10 27236 1796 60 724 3741 4798 3900 4798 0 633 82 18 0
18:58:00 18 0 7 27232 1660 84 816 3635 4732 3786 4732 0 668 82 18 0
18:59:00 25 0 2 28316 1164 92 1264 4767 5422 4987 5424 0 833 79 21 0

We note the higher swap rate achieved for an FBA swap device in Example 5-10
compared to the corresponding swap rate for an ECKD swap device in
Example 5-4 on page 50. The results are summarized in Table 5-4.

Table 5-4 Comparing swap rates for ECKD and FBA swap devices

The higher rate for FBA is expected. There is no physical device; instead,
swapping occurs to z/VM memory.

Because no real device is involved, we can not look at device utilization.
However, we can look at VDISK I/O rates, as shown in Example 5-11 on page 63.

Note: Writing to the raw VDISK in CMS requires serious programming. We
show in 5.4.2, “Swapping with DIAGNOSE discipline” on page 65 that the
Linux dasd driver picks up a CMS RESERVEd disk as well. Such a disk can be
handled with normal CMS utilities. The RSRVDISK EXEC, shown is 5.9,
“Initializing a VDISK using CMS tools” on page 74, is an example of a script to
initialize a VDISK.

ECKD swap device FBA swap device

Swap-in rate 1.5 MB/s 4 MB/s

Swap-out rate 1.8 MB/s 5 MB/s
62 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-11 VDISK I/O rate while swapping (FBA discipline)

Screen: ESAUSR3 ITSO ESAMON V3.3 02/22 18:43-18:59
1 of 2 User Resource Utilization - Part 2 USER rmhtux02 2064 C0ECB

 DASD MDisk Virt Cache I/O <---Virtual Device---->
 UserID DASD Block Cache Disk Hit Prty <----I/O Requests----->
Time /Class I/O I/O Hits I/O Pct Queued Cons U/R CTCA Other
-------- -------- ----- ----- ----- ---- ----- ----- ----- ----- ----- -----
18:59:00 RMHTUX02 80388 0 837 79K 1.0 0 0 0 0 0
18:58:00 RMHTUX02 64389 0 622 63K 1.0 0 0 0 0 0
18:57:00 RMHTUX02 62614 0 534 62K 0.9 0 0 0 0 0
18:56:00 RMHTUX02 60930 0 487 60K 0.8 0 0 0 0 0
18:55:00 RMHTUX02 62138 0 474 61K 0.8 0 0 0 0 0
18:54:00 RMHTUX02 60323 0 532 59K 0.9 0 0 0 0 0
18:53:00 RMHTUX02 60866 0 518 60K 0.9 0 0 0 0 0
18:52:00 RMHTUX02 59806 0 443 59K 0.7 0 0 0 0 0

As explained in Example 5-5 on page 51, VDISK dose not use MDC. The
reported MDC hits, therefore, apply to I/O other than the swap device (for
example, to the root file system device). These I/O operations account for the
difference in the DASD I/O and Virt Disk I/O columns.

The reported VDISK I/O rate during the period of approximately 75 K per minute
(1250 I/Os per second) translates to some 7 KB data transferred per I/O
operation.

Because of the rather short channel programs, the overhead of the swapping is
rather high. This shows in the number of dispatches per second reported in
Example 5-12 on page 64.
 Chapter 5. Examining Linux swap device options 63

Example 5-12 Number of dispatches while swapping

Screen: ESAPLDV ITSO ESAMON V3.3 02/22 18:55-19:00
1 of 2 Processor Local Dispatch Vector Activ CPU ALL USER rmhtux 2064 C0ECB

 <----Users-----> Tran <VMDBK Moves/sec> Dispatcher
Time Logged Actv In Q /sec CPU Steals To Master Long Paths
-------- ------ ---- *--- ----- -- ------ --------- ----------
19:00:00 148 127 77.0 136.6 01 868.8 0.0 5230.4
 00 0.0 1.0 2590.9
18:59:00 148 127 70.0 135.7 01 1093.0 0.0 5419.6
 00 0.0 1.9 2121.2
18:58:00 148 125 75.0 146.5 01 654.0 0.0 3632.7
 00 0.0 1.2 3487.0
18:57:00 148 127 76.0 139.2 01 303.8 0.0 2162.3
 00 0.0 0.1 4949.6
18:56:00 148 125 76.0 134.2 01 501.2 0.0 2720.3
 00 0.0 0.7 4384.0

5.4 The DIAGNOSE discipline
As shown in Table 5-1 on page 48, by default, the Linux dasd driver uses the
ECKD and FBA disciplines. In the past, the DIAGNOSE discipline had some
bugs, and its use was not encouraged. The kernels shipped by SuSE and Red
Hat, therefore, do not have the DIAGNOSE discipline built-in the kernel.

5.4.1 Using DIAGNOSE I/O for 3390 DASD
In Example 5-13 on page 65, we show how to enable the DIAGNOSE discipline
for a swap device.

Restriction: For the Linux 2.4.7 kernel, the patches published on the IBM
developerWorks® Linux for zSeries and S/390 home page are required to
make the DIAGNOSE discipline work:

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml
64 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml

Example 5-13 Persuading Linux to use the DIAGNOSE discipline for the swap disk

S cat /proc/dasd/devices
0200(ECKD) at (94: 0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0202(none) at (94: 8) is dasdc:unknown 1
0203(none) at (94: 12) is dasdd:unknown
$ echo set 200 off > /proc/dasd/devices 2
$ modprobe dasd_diag_mod 3
$ cat /proc/dasd/devices
0200(DIAG) at (94: 0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0202(none) at (94: 8) is dasdc:unknown 4
0203(none) at (94: 12) is dasdd:unknown

The process involves:

1. The 0200 disk is initially under control of the ECKD discipline of the dasd
driver. Before starting the Linux system, this disk was formatted with CMS
and RESERVEd.

2. The echo command instructs the dasd driver to stop using the device.

3. The DIAGNOSE discipline module (dasd_diag_mod.o) is loaded.

4. As part of its initialization, the DIAGNOSE driver looks for any disks it can
handle. Because the 0200 disk was removed from the ECKD driver in step 2,
the DIAGNOSE driver finds the disk immediately on initialization.

After loading the DIAGNOSE discipline module, the 0200 disk is under the
control of the DIAGNOSE discipline, as seen in Example 5-14.

Example 5-14 Console messages when loading the DIAGNOSE discipline module

debug: unregistering dasda
dasd(diag):DIAG discipline initializing
dasd(diag):/dev/dasda (0200): capacity (4kB blks): 144000kB
dasda:CMS1/ SW0200(MDSK): dasda dasda1

5.4.2 Swapping with DIAGNOSE discipline
As with the other experiments, we also drive this system with three processes
that allocate 7 MB each.
 Chapter 5. Examining Linux swap device options 65

Example 5-15 Swapping three processes to disk using the DIAGNOSE discipline

14:40:54 procs memory swap io system cpu
14:40:54 r b w swpd free buff cache si so bi bo in cs us sy id
14:40:54 3 0 2 25808 2036 60 736 2961 3015 3166 3017 0 206 94 6 0
14:41:54 2 1 2 25808 2036 64 784 2940 3112 3124 3112 0 203 94 6 0
14:42:54 3 0 1 25808 2036 64 928 3114 3136 3300 3136 0 207 94 7 0
14:43:54 3 0 1 25808 2036 68 748 3114 3127 3298 3127 0 209 94 6 0
14:44:54 3 0 1 25808 2036 80 1092 2982 3087 3165 3087 0 202 93 7 0
14:45:55 3 0 1 25808 1992 72 784 2962 3100 3183 3101 0 208 93 7 0
14:46:55 4 1 1 25808 2016 60 776 1848 2531 2004 2531 0 150 94 6 0
14:47:55 3 0 1 25808 2036 60 724 3102 3129 3288 3130 0 210 93 7 0
14:48:56 2 1 1 25808 2036 64 852 3068 3099 3249 3099 0 207 94 6 0
14:49:56 3 0 1 25808 2036 68 864 3001 3086 3179 3086 0 203 94 6 0
14:50:56 2 1 1 25808 2036 60 724 3059 3155 3279 3157 0 210 93 7 0

The reason we achieve a higher swap rate than when using the ECKD discipline
can be contributed mainly to the MDC hit rate observed in Example 5-16.

Example 5-16 MDC hit rate with three processes: Diagnose discipline

Screen: ESAUSR3 ITSO ESAMON V3.3 02/24 14:40-14:51
1 of 2 User Resource Utilization - Part 2 USER rmhtux02 2064 C0ECB

 DASD MDisk Virt Cache I/O <---Virtual Device---->
 UserID DASD Block Cache Disk Hit Prty <----I/O Requests----->
Time /Class I/O I/O Hits I/O Pct Queued Cons U/R CTCA Other
-------- -------- ----- ----- ----- ---- ----- ----- ----- ----- ----- -----
14:51:00 RMHTUX02 8547 2850 5796 0 67.8 0 0 0 0 0
14:50:00 RMHTUX02 8229 2787 5571 0 67.7 0 0 0 0 0
14:49:00 RMHTUX02 8274 2694 5702 0 68.9 0 0 0 0 0
14:48:00 RMHTUX02 8391 2802 5721 0 68.2 0 0 0 0 0
14:47:00 RMHTUX02 6469 2783 3805 0 58.8 0 0 0 0 0
14:46:00 RMHTUX02 8464 2844 5727 0 67.7 0 0 0 0 0
14:45:00 RMHTUX02 8110 2744 5489 0 67.7 0 0 0 0 0
14:44:00 RMHTUX02 8453 2709 5868 0 69.4 0 0 0 0 0
14:43:00 RMHTUX02 8199 2661 5665 0 69.1 0 0 0 0 0
14:42:00 RMHTUX02 8210 2791 5543 0 67.5 0 0 0 0 0
14:41:00 RMHTUX02 8483 2769 5814 0 68.5 0 0 0 0 0

Even with the higher MDC hit ratio, the device is still fully utilized, as shown in
Example 5-17 on page 67.
66 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-17 Device utilization when swapping using the DIAGNOSE discipline

Screen: ESADSD6A ITSO ESAMON V3.3 02/24 14:40-14:51
1 of 3 DASD Performance Analysis - Part 2 DEVICE 3752 2064 C0ECB

 Dev Device %Dev SSCH Resp Serv <-Seek--> Read Access
Time No. Serial Type Busy /sec Time Time Avg Non0 Pct Density
-------- ---- ------ ------ ---- ----- ----- ----- ---- ---- ---- -------
14:51:00 3752 LNXU4R 3390-3 85.0 49.1 18.7 17.3 0 23 0.0 17.31
14:50:00 3752 LNXU4R 3390-3 84.0 47.2 17.8 17.8 0 7 0.0 16.64
14:49:00 3752 LNXU4R 3390-3 82.2 45.0 20.1 18.3 0 7 0.0 15.84
14:48:00 3752 LNXU4R 3390-3 81.8 46.8 18.2 17.5 0 7 0.0 16.47
14:47:00 3752 LNXU4R 3390-3 68.8 47.2 14.6 14.6 0 7 0.0 16.63
14:46:00 3752 LNXU4R 3390-3 84.0 48.5 19.1 17.3 0 17 0.0 17.07
14:45:00 3752 LNXU4R 3390-3 81.9 45.8 18.6 17.9 0 6 0.0 16.16
14:44:00 3752 LNXU4R 3390-3 82.3 45.2 18.2 18.2 0 7 0.0 15.91
14:43:00 3752 LNXU4R 3390-3 84.0 45.2 20.4 18.6 0 7 0.0 15.92
14:42:00 3752 LNXU4R 3390-3 81.7 46.6 17.9 17.5 0 8 0.0 16.41
14:41:00 3752 LNXU4R 3390-3 83.5 47.3 18.7 17.6 0 15 0.0 16.67

5.5 Using DIAGNOSE I/O for VDISK
The other option we have is use the DIAGNOSE discipline for a VDISK. After
some debugging and reading the source code of the driver, we found that the
DIAGNOSE discipline will only handle a VDISK when the CMS FORMAT is done
with a block size of 512 bytes.

In Example 5-18 on page 68, we see the console messages when loading a
device under the DIAGNOSE discipline.

Note: An effect that is not apparent from the proceeding example is the
interactive response of the system. It is very bad. When typing a command,
the echo of the input often takes seconds to show.

Note: Formatting with a 512 byte block size is not the default for the CMS
FORMAT command. The small block size creates a lot of administrative
overhead for the CMS file system. Using a small block size is not an obvious
way to increase throughput.
 Chapter 5. Examining Linux swap device options 67

Example 5-18 Console messages when loading DIAGNOSE discipline for VDISK

dasd:/proc/dasd/devices: 'set 207 on'
dasd(diag):/dev/dasdh (0207): capacity (0kB blks): 65536kB
dasdh:CMS1/ SWP207(MDSK): dasdh dasdh1

5.5.1 Enabling DIAGNOSE I/O for VDISK
In Example 5-19, we show how to enable DIAGNOSE I/O for a VDISK.

Example 5-19 Persuading Linux to use DIAGNOSE discipline for VDISK

$ cat /proc/dasd/devices
0200(DIAG) at (94: 0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0202(none) at (94: 8) is dasdc:unknown
0203(none) at (94: 12) is dasdd:unknown
0204(none) at (94: 16) is dasde:unknown
0205(ECKD) at (94: 20) is dasdf:active at blocksize: 4096, 5400 blocks, 21 MB
0206(none) at (94: 24) is dasdg:unknown
0207(DIAG) at (94: 28) is dasdh:active at blocksize: 512, 131072 blocks, 64 MB 1
01cd(none) at (94: 32) is dasdi:unknown
$ mkswap /dev/dasdh1 2
Setting up swapspace version 1, size = 66539520 bytes
$ swapon /dev/dasdh1 3
$ swapoff /dev/dasda1 4

The process involves:

1. We verify the 0207 disk is using the DIAGNOSE discipline.

2. The mkswap command writes the “swap signature” to the swap device.

3. The swapon command adds the device to the list of swap devices, thus
enabling Linux to use the device.

4. Finally, the swapoff command removes the original swap device (disk 0200)
from the list of active swap devices. This command can take a moment to
complete as Linux migrates swapped pages from this device to the active
/dev/dasdh1 device.

5.5.2 Swapping with DIAGNOSE I/O for VDISK
With the VDISK controlled by the DIAGNOSE discipline of the driver, we seem to
be able to get a much higher swap rate. However, we need to run more
processes in order to stress Linux memory management enough to show this.
We examine the swap rate in Example 5-20 on page 69.
68 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-20 Swapping to VDISK through the DIAGNOSE discipline

r# vmstat 60|timestamp
19:54:00 procs memory swap io system cpu
19:54:00 r b w swpd free buff cache si so bi bo in cs us sy id
19:54:00 1 0 0 0 16016 220 4472 1193 1158 1332 1159 0 256 44 3 53
19:55:00 18 0 3 25052 1720 44 720 330 501 413 505 0 65 85 2 13
19:56:00 18 0 7 25252 1712 112 1340 355 553 442 553 0 47 98 2 0
19:57:00 19 0 5 27228 1836 52 836 4458 5145 4698 5148 0 732 85 15 0
19:58:01 11 0 17 31624 1092 48 636 10278 8970 10631 8975 0 2010 74 26 0
19:59:01 12 0 18 31620 1028 56 752 10695 9449 10893 9449 0 2137 72 28 0
20:00:01 7 0 26 34328 2036 128 1764 12991 11472 13325 11478 0 2839 64 35 1
20:01:01 10 0 24 35952 1424 56 704 14398 12797 14701 12804 0 3311 60 39 1
20:02:01 10 0 25 38160 1072 52 580 18392 16289 18738 16292 0 4484 52 47 1
20:03:01 17 1 21 42468 1028 52 768 20113 17807 20461 17811 0 5089 47 52 1
20:04:01 7 0 40 51224 1020 32 572 26647 19170 27186 19177 0 6639 41 57 1
20:05:01 3 0 52 60040 1020 36 812 36314 18666 37115 18673 0 8729 35 63 2
20:06:01 4 0 50 60112 1016 32 724 43553 17260 44090 17262 0 10124 32 67 2

In Example 5-21 on page 70, we compare the VDISK swapping through the FBA
driver to swapping through the DIAGNOSE driver.

Note: This experiment shows a significantly higher swap-in rate than swap-out
rate. On a stable system, one might expect each swap-out to be followed by a
corresponding swap-in (and thus show equal rates). We believe the observed
effect is due to multiple pages being brought in on a page fault, as discussed
in 5.2.2, “Impact of page-cluster on MDC hit rate” on page 58.

When contention is high enough, many of the swap-in pages are stolen by
other processes before the requesting process can access them. Because the
swap-in pages are fresh (they have not yet been modified), they are excellent
candidates to be stolen by Linux.
 Chapter 5. Examining Linux swap device options 69

Example 5-21 Comparing FBA and DIAGNOSE discipline VDISK I/O rates

Screen: ESAUSR3 ITSO ESAMON V3.3 02/22 19:54-20:07
1 of 2 User Resource Utilization - Part 2 USER RMHTUX02 2064 C0ECB

 DASD MDisk Virt Cache I/O <---Virtual Device---->
 UserID DASD Block Cache Disk Hit Prty <----I/O Requests----->
Time /Class I/O I/O Hits I/O Pct Queued Cons U/R CTCA Other
-------- -------- ----- ----- ----- ---- ----- ----- ----- ----- ----- -----
20:05:00 RMHTUX02 2717 0 2604 239K 95.8 0 0 0 0 0
20:04:00 RMHTUX02 2133 0 2032 273K 95.3 0 0 0 0 0
20:03:00 RMHTUX02 1763 0 1704 278K 96.7 0 0 0 0 0

Screen: ESAUSR3 ITSO ESAMON V3.3 02/22 18:43-18:59
1 of 2 User Resource Utilization - Part 2 USER rmhtux02 2064 C0ECB

 DASD MDisk Virt Cache I/O <---Virtual Device---->
 UserID DASD Block Cache Disk Hit Prty <----I/O Requests----->
Time /Class I/O I/O Hits I/O Pct Queued Cons U/R CTCA Other
-------- -------- ----- ----- ----- ---- ----- ----- ----- ----- ----- -----
18:59:00 RMHTUX02 80388 0 837 79K 1.0 0 0 0 0 0
18:58:00 RMHTUX02 64389 0 622 63K 1.0 0 0 0 0 0
18:57:00 RMHTUX02 62614 0 534 62K 0.9 0 0 0 0 0

Note the dramatic differences reported in Virt Disk I/O (273 K for DIAGNOSE
versus 63 K for FBA). The difference in DASD I/O is accounted for by the fact that
VDISK I/O when using FBA is counted as DASD I/O. When using DIAGNOSE
however, VDISK I/O is not counted as DASD I/O; the reported numbers are the
result of other I/O performed against the root device (memory contention causes
portions of code such as libraries to be dropped from memory and later loaded
back from disk).

Even though swapping to VDISK does not involve real disks, it is not free. Each
page swapped by Linux must be copied by CP from the primary address space
of the Linux virtual machine into the VDISK address space. CPU utilization
reported in Example 5-22 on page 71 shows a large portion of the CPU cycles
for the virtual machine are spent by CP on behalf of the user (the T/V ratio is high
with 1.5).

Note: The top half of Example 5-21 shows VDISK I/O rates using the
DIAGNOSE driver; the bottom half reports I/O rates using the FBA driver
(copied from Example 5-11 on page 63 and shown here for clarity).

I/O rate using
DIAGNOSE
driver

I/O rate using
FBA driver
70 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-22 A high T/V ratio during heavy swapping to VDISK

Screen: ESAUSR2 ITSO ESAMON V3.3 02/22 20:00-20:08
1 of 3 User Resource Utilization USER rmhtux02 2064 C0ECB

 <---CPU time--> <--------Main Storage (pages)--------->
 UserID <(seconds)> T:V <Resident> Lock <-----WSS----->
Time /Class Total Virt Rat Total Activ -ed Total Actv Avg Resrvd
-------- -------- ----- ----- --- ----- ----- ---- ----- ---- ---- ------
20:08:00 RMHTUX02 59.78 38.57 1.5 6611 6611 8 6611 6611 6611 0
20:07:00 RMHTUX02 59.31 38.88 1.5 6611 6611 5 6611 6611 6611 0
20:06:00 RMHTUX02 59.66 39.64 1.5 6611 6611 0 6611 6611 6611 0
20:05:00 RMHTUX02 59.69 40.83 1.5 6611 6611 0 6611 6611 6611 0
20:04:00 RMHTUX02 59.60 42.78 1.4 6611 6611 0 6611 6611 6611 0
20:03:00 RMHTUX02 59.69 44.81 1.3 6611 6611 0 6611 6611 6611 0
20:02:00 RMHTUX02 59.76 46.22 1.3 6611 6611 0 6611 6611 6611 0
20:01:00 RMHTUX02 58.97 48.35 1.2 6611 6611 0 6611 6611 6611 0

Again, what the numbers do not show is the interactive behavior of the system.
Unlike the other configurations, we find that with the DIAGNOSE discipline of the
dasd driver swapping to VDISK, the interactive response continues to be good.
Even with the system swapping at 40 MB/s, the interactive response is good
enough to be editing a file without getting annoyed.

5.6 Using multiple VDISKs for swapping
Some recommendations for swapping involve the use of multiple swap partitions.
When multiple swap partitions with the same priority are used, Linux will
effectively spread the I/O over multiple disks and can achieve a higher I/O rate.
When using VDISKs however, this does not apply. There is very little queueing
for the VDISK, and any further increase of swapping is unlikely to provide any
benefit.

There is, however, a good case for using multiple swap disk devices with
different priorities. If multiple swap devices with different priority are available,
Linux will attempt to fill the one with highest priority before using the next device.
The algorithms for allocating pages on swap devices in Linux cause the active
area to “sweep” over the device (this reduces seek times on the device and
increases the ability of Linux to build long I/O chains).

This means that over time the entire swap device has been referenced. In the
case of VDISK, this means that CP has to provide memory for the entire VDISK,
even though the Linux virtual machine might only need a small portion of the
VDISK at any given time. If memory contention is high enough, the contents of
 Chapter 5. Examining Linux swap device options 71

the VDISK will be paged out by CP and must be brought back in when Linux next
references that part of the VDISK.

If we give the Linux virtual machine two smaller VDISKs instead of one big
VDISK and use them as swap device with different priorities, the “footprint” is
effectively reduced by 50%.

5.7 Linux swap device recommendations
Excessive swapping in Linux is costly in both consumed CPU cycles and in
response time. The best strategy is to reduce the amount of swapping that
occurs in a Linux guest. Some general guidelines are:

� Size the Linux virtual machine to reduce the amount of Linux swapping.
The optimum virtual machine size is a trade-off between reducing overall
z/VM memory usage and reducing swapping in a Linux guest. As discussed
in 3.5, “Conclusions for sizing z/VM Linux guests” on page 33, reduce the
virtual machine size of Linux guest to the point where swapping begins under
normal load, and then add an additional amount to minimize Linux swapping.

� The amount of swap space to allocate depends on the memory
requirements of your Linux guest.
The suggestion that swap space should be twice the memory size of a Linux
machine should not apply to a z/VM Linux guest. If a Linux guest actually
uses this much swap space, it probably indicates a larger virtual machine size
should be allocated to the guest.

� Do not enable MDC on Linux swap minidisks.
As stated in 3.1.2, “Linux swap space” on page 23, the read ratio is not high
enough to overcome the write overhead.

� Swapping to VDISK is faster than swapping to DASD.
In addition, when using a VDISK swap device, your z/VM performance
management product can report swapping by a Linux guest. Be aware,
however, that a VDISK is not recommended for z/VM memory-constrained
systems, as discussed in 2.4.3, “VDISKs” on page 18.

� The DIAGNOSE driver provides faster VDISK access than the default
FBA driver.
Although DIAGNOSE discipline is faster, it requires more work to setup.
Consider using the DIAGNOSE discipline you are comfortable with the
additional effort to manage it.
72 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

� Consider multiple swap devices rather than a single, large VDISK swap
device.
Using multiple swap devices with different priorities can alleviate stress on the
VM paging system when compared to a single, large VDISK. As discussed in
5.6, “Using multiple VDISKs for swapping” on page 71, a VDISK combined
with a DASD swap device can provide a small, fast swap option (the VDISK)
with spillover to a larger, slower DASD swap device.

5.8 Program text for hogmem
With hogmem, it is easy to run processes that allocate and use virtual memory.
We use this to compare efficiency of the different swap devices in Linux. The
program is shown in Example 5-23.

Example 5-23 Listing of hogmem.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <limits.h>
#include <signal.h>
#include <time.h>
#include <sys/times.h>

#define MB (1024 * 1024)

int nr, intsize, i, t;
clock_t st;
struct tms dummy;

void intr(int intnum)
{
 clock_t et = times(&dummy);

 printf("\nMemory speed: %.2f MB/sec\n", (2 * t * CLK_TCK * nr + (double) i
* CLK_TCK * intsize / MB) / (et - st));
 exit(EXIT_SUCCESS);
}

int main(int argc, char **argv)
{
 int max, nr_times, *area, c;

 setbuf(stdout, 0);
 signal(SIGINT, intr);
 signal(SIGTERM, intr);
 intsize = sizeof(int);
 Chapter 5. Examining Linux swap device options 73

 if (argc < 2 || argc > 3) {
 fprintf(stderr, "Usage: hogmem <MB> [times]\n");
 exit(EXIT_FAILURE);
 }
 nr = atoi(argv[1]);
 if (argc == 3)
 nr_times = atoi(argv[2]);
 else
 nr_times = INT_MAX;
 area = malloc(nr * MB);
 max = nr * MB / intsize;
 st = times(&dummy);
 for (c = 0; c < nr_times; c++)
 {
 for (i = 0; i < max; i++)
 area[i]++;
 t++;
 putchar('.');
 }
 i = 0;
 intr(0);
 /* notreached */
 exit(EXIT_SUCCESS);
}

The program also reports a “memory bandwidth” in MB/s, but it should be clear
that this has little value for Linux in a virtual machine.

5.9 Initializing a VDISK using CMS tools
The RSRVDISK EXEC, shown in Example 5-24 on page 75, can be used to
initialize a VDISK in CMS before starting Linux. This is only sample code to
illustrate what needs to be done. You should customize this script and call it from
PROFILE EXEC.
74 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 5-24 RSRVDISK EXEC: Make a VDISK into CMS RESERVEd

/* RSRVDISK EXEC Format and Reserve a fresh VDISK */
arg cuu .
if cuu = '' then signal usage

'PIPE (end \)',
 '\ command QUERY DISK',
 '| drop',
 '| spec 13 1', /* All used filemodes */
 '| strliteral /ABCDEFGHIJKLMNOPQRSTUVWXYZ/',
 '| fblock 1',
 '| sort',
 '| unique single',
 '| take 1',
 '| append strliteral /*/', /* A default */
 '| var fm'

if fm = '*' then call emsg 36, 'No free filemode found'
cuu = right(cuu,4,0)

queue '1'
queue 'SW'cuu
'FORMAT' cuu fm '(BLK 4K'
queue '1'
'RESERVE' userid() 'SWAP'cuu fm
'RELEASE' fm

return

emsg:
 parse arg rc, txt
 say txt
 if rc ¬= 0 then exit rc
return

usage: say 'SWAPDISK cuu'

After running the program, start Linux and initialize the disk with the mkswap
command. This does not undo the CMS formatting, but only causes Linux to
write some blocks in the “payload” of the disk (the single CMS file created on the
disk). Then, without running the swapon command, shut down the Linux guest
and IPL CMS again. Example 5-25 on page 76 shows how to copy the modified
blocks.
 Chapter 5. Examining Linux swap device options 75

Example 5-25 Copying the modified blocks from the RESERVEd disk

list * * K (date
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME
RMHTUX02 SWAP0207 K6 F 4096 16360 16360 2/21/03 5:21:36
Ready; T=0.01/0.01 05:28:46
pipe diskrandom rmhtux02 swap0207 k number 1-16360 | strip trailing 00 | locate
11 | > sample swap0207 a | chop 10 | cons
 1
Ready; T=1.39/1.59 05:30:10

The PIPE command in Example 5-25 creates a small file on the A disk to hold
the modified blocks (and it shows only a single block was modified). This file can
be used to prepare a fresh VDISK again:

list * * c
RMHTUX02 SWAP0207 C6
Ready; T=0.01/0.01 05:47:57
pipe < sample swap0207 | pad 4106 00 | fileupdate rmhtux02 swap0207 c6
Ready; T=0.01/0.01 05:48:18

To Linux, that new VDISK, now looks just like the one that was prepared with the
mkswap command before. If you would take the time to study the contents of the
SAMPLE SWAP0207 file, you will find that it is easy to create the contents from
scratch and even make it work for VDISKs of any size.

Tip: A similar process can be used if you want VDISK to hold temporary files
for Linux. In this case, run the mke2fs command instead of the mkswap
command against the device before you copy the payload from it. If
necessary, you can also create directories (and even files) to have the disk in
the correct state for when Linux boots.
76 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 6. CPU resources and the z/VM
scheduler

In this chapter, we cover CPU resources and the z/VM scheduler. Topics include:

� Understanding LPAR weights and options

� The CP scheduler

� Virtual machine scheduling

� CP scheduler controls

� Analysis of the SET SRM LDUBUF control

� Virtual Machine Resource Manager

6

© Copyright IBM Corp. 2003. All rights reserved. 77

6.1 Understanding LPAR weights and options
There are two current trends:

� One is to consolidate multiple slower processors to much faster z/900s.

� The other is to separate workloads through the use of LPAR mode to avoid
issues with the 2 GB line.

This section should clarify some of the configuration options.

Example 6-1 shows a logical partition (LPAR) report. Because z/VM often
operates in multiple LPAR environments, understanding LPAR options and their
impacts on performance will help you configure your systems to meet your
business requirements.

Example 6-1 LPAR report

Report: ESALPAR Logical Partition Analysis ITSO Residency ESAMAP 3.3.0
Monitor initialized: on 2064 serial C0ECB First record analyzed: 01/30/03
--
 <--Complex--> <--Logical-> <--------Logical Processor---------->
 Phys Dispatch <-Partition> VCPU <%Assigned> Cap- Wait
Time CPUs Slice Name No. Addr Total Ovhd Weight ped Comp
-------- ---- -------- -------- --- ---- ----- ---- ------ ---- ----
18:00:00 13 Dynamic A12 12 0 22.3 0.4 10 No No
 1 35.7 0.4 10 No No
 ---- ----
 LPAR 58.0 0.8
 A1 1 0 5.3 0.5 180 No No
 1 5.3 0.5 180 No No
 ----- ----
 LPAR 10.6 0.9
 A2 2 0 5.2 0.5 10 No No
 1 5.2 0.5 10 No No
 ----- ----
 LPAR 10.5 0.9
 A3 3 0 5.3 0.5 180 No No
 1 5.3 0.5 180 No No
 ----- ----
 LPAR 10.6 0.9
 A4 4 0 1.5 0.2 10 No No
 1 0.3 0.0 10 No No
 ----- ----
 LPAR 1.8 0.2
 A5 5 0 3.2 0.3 10 No No
 1 3.0 0.3 10 No No
 2 2.9 0.3 10 No No
 3 2.8 0.3 10 No No
78 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

 ----- ----
 LPAR 11.8 1.2
 A6 6 0 5.1 0.5 10 No No
 1 5.2 0.5 10 No No
 ----- ----
 LPAR 10.3 0.9
 A7 7 0 9.2 0.5 10 No No
 1 9.0 0.5 10 No No
 ----- ----
 LPAR 18.3 1.0
 A8 8 0 4.6 0.5 10 No No
 1 4.8 0.5 10 No No
 ----- ----
 LPAR 9.4 0.9
 A9 9 0 4.5 0.5 10 No No
 1 4.6 0.5 10 No No
 ----- ----
 LPAR 9.1 0.9
 A10 10 0 4.5 0.5 10 No No
 1 4.5 0.5 10 No No
 ----- ----
 LPAR 9.0 1.0
 A11 11 0 5.7 0.5 180 No No
 1 5.7 0.5 180 No No
 ----- ----
 LPAR 11.4 0.9
 C1 13 0 100.0 0.0 Ded No Yes
 1 100.0 0.0 Ded No Yes
 ----- ----
 LPAR 200.0 0.0
 C2 14 0 100.0 0.0 Ded No Yes
 1 100.0 0.0 Ded No Yes
 ----- ----
 LPAR 200.0 0.0
 C3 15 0 100.0 0.0 Ded No Yes
 1 100.0 0.0 Ded No Yes
 ----- ----
 LPAR 200.0 0.1

System total logical partition busy: 770.7 10.8

In Example 6-1, the z/VM LPAR (A12) is listed first in the report. The report
shows what z/VM considers its processor utilization to be. Assigned time is the
time that a physical processor is assigned to a logical one. LPARs are prioritized
by weights, which are explained in 6.1.2, “Converting weights to logical processor
speed” on page 81.
 Chapter 6. CPU resources and the z/VM scheduler 79

All of the assigned times and utilizations shown in this report are in absolute
numbers (as are the numbers reported in both ESAMAP and ESAMON),
meaning these values are percentages of one processor. There is never a case
of a reported “percent of a percent,” where one of the “percents” is not provided.
Therefore, the VM LPAR is shown as using 58% of a possible 200% (two
processors).

Other values reported for the A12 LPAR include:

� Dispatch Slice (set to Dynamic)
� Capped (set to No)
� Wait completion (set to No)

These are discussed further in 6.1.4, “LPAR options” on page 82.

There are two forms of overhead reported: logical and physical. Logical
overhead can be charged to the LPAR, whereas physical overhead can not.
There is a correlation between the number of logical processors defined and the
amount of physical overhead involved in time slicing the physical processor
between the logical processors: The more logical processors, the higher the
overhead.

This example should be almost a worst case example. In this example, the
logical overhead was 10.8% of one processor, but the physical overhead, as
shown in the next section, was 39.9%.

6.1.1 Physical LPAR overhead
The overhead of managing the physical processors from Example 6-1 on
page 78 is shown in Example 6-2 (the data comes from the same report as
Example 6-1 on page 78).

Example 6-2 LPAR physical overhead

 Physical CPU Management time:
 CPU Percent
 --- -------
 0 6.815
 1 4.968
 2 5.000
 3 6.735
 4 4.874
 5 6.513

Note: These reports show only standard processors (CPs); Integrated Facility
for Linux (IFL) and Internal Coupling Facility (ICF) processors are not shown.
80 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

 6 4.920
 9 0.007
 10 0.007
 11 0.007
 12 0.008
 13 0.007
 14 0.007

 Total: 39.870

From the report, we see there are seven shared physical processors (0-6); each
with an overhead in the 5-6% range. The six dedicated processors (9-14) have
less overhead. However, this does not imply processors should be dedicated to
LPARs to reduce overhead. In this case, high overhead is caused by the large
number of logical processors vying for time on the physical processors.

6.1.2 Converting weights to logical processor speed
An LPAR is granted control of processors based on time slices. Each LPAR gets
time slices based on the weighting factor for the LPAR. To determine the weight
of each logical processor, use the following calculation:

1. Add up all the weights of the logical processors.
In Example 6-1 on page 78, there are 12 LPARs (A1-A11) sharing seven
logical processors (0-6) based on weighting. Of the 12, three have a weighted
share of 180 (LPARs A1, A3, and A11). The remainder have a weighted share
of 10. Therefore, the total weight is 630.

2. Divide the weight of the “interesting LPAR” into the total.
This is the “logical share” of the physical complex allocated to the “interesting
LPAR.” LPAR A12 running z/VM has a weight of 10. Dividing this by the total
shares (630) yields a 1.6% share of the seven shared processors.

3. Divide the number of logical processors of the LPAR into the “logical
share.”
This is the share of each logical processor that is directly relative to the
maximum speed at which a logical processor will operate if capped. Thus,
1.6% of seven processors is equivalent to about 10% of one processor
(). Divide this into the two logical processors used by our VM
system in LPAR A12, and each processor would be allocated 5% of one
processor.

Note: To reduce physical overhead, use fewer LPARs and fewer logical
processors.

1.6 7× 11.2=
 Chapter 6. CPU resources and the z/VM scheduler 81

With dynamic timeslicing, the LPAR weight is a guaranteed minimum, not a
maximum allocation CPU resource. If all LPARs use their allotted share, this
would be the amount of processing that could be performed. Normally (and in
this case), very few of the LPARs had any activity. Thus, the A12 LPAR could get
as much as 90% of each logical engine in its assigned time.

6.1.3 LPAR analysis example
For example, if the weight of an LPAR is 10, and the total weights of all LPARs is
1000, then the LPAR is allocated 1% of the system. If the system consists of 10
processors, the LPAR is allocated 10% of one physical processor. If the LPAR
has two logical processors, each logical processor is allocated 5% of a physical
processor. Thus, increasing the number of logical processors in a complex will
decrease the relative speed of each logical processor in an LPAR.

6.1.4 LPAR options
LPAR shares can be defined as capped, meaning that their share of the physical
system is capped to their given share. Given the situation of 1% allocated, this
would be a very small amount of resource. If not capped, unused CPU resources
are available to any LPAR that can utilize the resource based on given weights.
Capped shares should never be used except in installations where a financial
agreement exists to provide a specific speed of processor.

The time slice is either specific or dynamic. Specific time slices are rarely if ever
used. The impact of having a specific time slice will likely mean erratic
responsiveness from the processor subsystem. There does not seem to be any
useful reason for using specific time slices.

Wait completion defines whether or not LPARs will either give up the processor
when there is no remaining work, or keep it for the remaining time slice. With wait
completion enabled, an LPAR will voluntarily relinquish the processor when its
work is completed. This option may be useful for LPARs running as dedicated
partitions.

Note: This calculation is always applicable, even when the LPAR runs at less
than 100% capacity. If an LPAR does not use its allocation, the extra CPU
cycles are reallocated based on existing weights defined to other uncapped
LPARs requesting more CPU. However, capped LPARs cannot acquire more
CPU cycles than their assigned weight, even if those cycles are available.
82 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

6.1.5 Shared versus dedicated processors
When there are multiple physical processors on a system to be utilized by many
different logical partitions, there is the option of dedicating processors to an
LPAR. In general, this is only used for two reasons:

� For benchmarks to reduce questionable impacts from other workloads.

� When the workload is steady enough to utilize the processors, and there are
sufficient resources to justify dedicated processors.

To justify the cost of zSeries implementations, the objective should always be
high utilization. High utilization leverages the value of the reliability, availability,
and serviceability of the zSeries systems. Other platforms rarely operate at high
utilizations. Dedicating physical resources such as processors to one LPAR has
the potential for reducing the overall system utilization. Reducing system
utilization reduces zSeries effectiveness and increases the cost per unit of work.

6.2 The CP scheduler
The CP scheduler function attempts to keep as many of the logged-on virtual
machines as possible operating concurrently. It takes into account the availability
of processing time, paging resources, and real storage (as compared to virtual
machine requirements).

The CP scheduler uses two time slices in determining how long a virtual machine
competes for access to the processor:

� Elapsed time slice
Virtual machines compete for use of the processor for the duration of the
elapsed time slice.

� Dispatch time slice
During its elapsed time slice, a virtual machine can only control the processor
for a duration of its dispatch time slice. This is often referred to as the minor
time slice.

When the dispatch time slice for a virtual machine expires, the scheduler
readjusts its priority relative to other virtual machines competing for the
processor. When its elapsed time slice expires, the scheduler drops the virtual
machine from the set competing for the processor; the scheduler then attempts
to add a virtual machine eligible for processor resources into the competing set.

Important: When running benchmarks, always use dedicated processors to
reduce the impact of other workloads on the results.
 Chapter 6. CPU resources and the z/VM scheduler 83

6.2.1 Transaction classification
For dispatching and scheduling, virtual machines are classified according to their
transaction characteristics and resource requirements:

� Class 1
These virtual machines are designated as interactive tasks.

� Class 2
These virtual machines are designated as non-interactive tasks.

� Class 3
These virtual machines are designated as resource-intensive tasks.

A special class designation for virtual machines that require immediate access to
processor resources. This class is referred to as Class 0.

For processor scheduling, started virtual machines reside on one of three lists:

� Dormant list

� Eligible list

� Dispatch list

6.2.2 The dormant list
The dormant list contains virtual machines with no immediate tasks that require
processor servicing. As virtual machines require processor resources, they move
to the eligible list.

6.2.3 The eligible list
The eligible list consists of virtual machines not currently being considered for
dispatching due a system resource constraint (such as paging or storage).
Virtual machines are kept in the eligible list when demand for system resource
exceeds what is currently available. Virtual machines on the eligible list are
classified according to their anticipated workloads requirements:

� E1
E1 refers to Class 1 virtual machines expected to perform short transactions.
Upon entering the eligible list for the first time, virtual machines are classified
E1.

� E2
E2 refers to Class 2 virtual machines expected to perform medium-length
transactions. These virtual machines dropped to the eligible list after
spending at least one elapsed time slice in E1 without completing processing.
84 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

� E3
E3 refers to Class 3 virtual machines expected to perform long running
transactions. E3 virtual machines spent at least two elapsed time slices on
the eligible list without completing processing (at least one in E1 and one in
E2).

Class 0 virtual machines do not wait in the eligible list for processor resources.
Instead, they move immediately to the dispatch list. These are classified as E0
virtual machines. We discuss E0 virtual machines in 6.4.2, “The CP QUICKDSP
option” on page 94.

As processor resources become available, virtual machines are moved from the
eligible list to the dispatch list. Classification on the eligible list influences the
priority and elapsed time slice assigned to virtual machines when they move to
the dispatch list. Priorities assigned to virtual machines are intended to:

� Slow down virtual machines that are resource intensive in favor of virtual
machines that require less resources.

� Ensure virtual machines receive a designated portion of the processor (see
6.4.3, “The CP SET SHARE command” on page 94).

� Control the amount and type of service based on virtual machine
classification (E1, E2, or E3).

How the scheduler calculates priorities is discussed in 6.3.3, “Entering the
dispatch list” on page 87.

6.2.4 The dispatch list
Virtual machines contending for processor time are placed on the dispatch list.
Entries higher on this list are more likely to receive processor time. Virtual
machines in the dispatch list retain the transaction classification assigned while
waiting in the eligible list. Transaction classifications on the dispatch list are
referred to as Q1, Q2, Q3, and Q0 (analogous to the E1, E2, E3, and E0
classification on the eligible list).

6.3 Virtual machine scheduling
Figure 6-1 illustrates the state transitions involved in scheduling a virtual
machine.

Note: E0 virtual machines on the eligible list are included in the count of Q0
virtual machines displayed by the CP INDICATE LOAD command.
 Chapter 6. CPU resources and the z/VM scheduler 85

Figure 6-1 CP scheduling: State transitions

6.3.1 Entering the dormant list
On logon, virtual machines are initially placed on the dormant list. Upon
completing a transaction, virtual machines enter the dormant list from the
dispatch list.

Definition: Figure 6-1 shows VM definition blocks on the dispatch and eligible
lists. VM definition blocks represent virtual processors allocated to a virtual
machine. By default, every virtual machine has at least one definition block
(the base). Definition blocks are discussed in 6.3.4, “Scheduling virtual
processors” on page 88.

Dispatch list Eligible list

VM
Definition
block E1

VM
Definition
block En

.

.

.

.

.

.

.

.

Dormant list

Log onLog off

Virtual machine
has work to perform

Virtual machine
becomes idle

Resource limit
exceeded

Virtual machine
is ready

Virtual machine
is waiting

Resource available
or
E0

Dispatch time slice
expires

VM
Definition
block D1

VM
Definition
block Dn

.

.

.

.

.

.

.

.

Note: This is referred to as “dropping from queue.”
86 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

A virtual machine can enter the dormant list from the dispatch if its elapsed time
slice has expired and it is waiting for a resource (such as a demand page-in).
When processor time is required, virtual machines are moved to the eligible list.

6.3.2 Entering the eligible list
On entry to the eligible list from the dormant list, virtual machines are normally
classified as E1 (E0 virtual machines move directly to the dispatch list). Virtual
machines can enter the eligible list from the dispatch list if they did not complete
processing in their elapsed time slice. In this case, an E1 virtual machine drops
to E2; E2 virtual machines drop to the E3; E3 virtual machines remain in E3.

6.3.3 Entering the dispatch list
In order to move from the eligible list to the dispatch list, a virtual machine must
pass three tests:

� Storage test
The virtual machine’s working set must fit in real storage. We discuss this in
“The STORBUF control” on page 90.

� Paging test
If the user is a loading user, there must be room in the loading user buffer.
Loading users are discussed in “The LDUBUF control” on page 90.

� Processor test
There must be room in the dispatch buffer. The dispatch buffer size is
discussed in “The DSPBUF control” on page 89.

A virtual machine on the dispatch list remains there for the duration of its elapsed
elapsed time slice. Elapsed time slices are assigned to virtual machines as they
enter the eligible list and are based on their transaction class.

CP assigns a initial elapsed time slice value of 1.2 seconds for E1 virtual
machines during initialization. This value is dynamically adjusted during system
operation:

� As the number of virtual machines that complete processing in E1 increases,
the size of the E1 elapsed time slice decreases.

� As the number of E2 virtual machines increases, the size of the E1 elapsed
time slice increases.

� If the number of E1 virtual machines drops below a threshold, and the number
of E3 virtual machines increases above a threshold, the size of the E1
elapsed time slice increases.
 Chapter 6. CPU resources and the z/VM scheduler 87

The E1 elapsed time slice will always be a value between 50 ms and 16 seconds.
E0, E2, and E3 elapsed time slices are assigned values 6, 8, and 48 times larger
respectively than the E1 time slice.

The dispatch time slice is computed at CP initialization. Its value can be queried
using the QUERY SRM DSPSLICE command.

While on the dispatch list, a virtual machine runs for its designated elapsed time
slice. If processing has not completed in that period, it is moved to back to the
eligible queue (with a lower workload classification if not already in the E3
queue).

6.3.4 Scheduling virtual processors
Additional VM definition blocks are created for each virtual processor defined to a
virtual machine. These additional are linked to their respective base definition
block. Both the base and any additional definition blocks cycle through the three
scheduler lists. The base definition block owns the virtual storage and most
virtual resources for the virtual machine. As the base and additional definition
blocks move through the lists, the base is always in a list at least as high as any
of its linked definition blocks.

This ensures the resource requirements of the virtual machine as a whole are
considered when scheduling a VM definition block. However, processor time
consumed by any additional definition blocks is measured independently of the
base. This value is used when scheduling that block while on the dispatch list.

To illustrate, consider a virtual machine with two virtual processors (and two VM
corresponding definition blocks), both of which start in the dormant list. If the
additional definition block becomes dispatchable, both definition blocks (the base
and the additional) move to the eligible list. After waiting in the eligible list, both
definition blocks again move to the dispatch list and are given the same priority.
As the additional definition block consumes resources however, its intermediate
dispatch priority is calculated independently from the base block definition. We
discuss virtual processors in more detail in 7.6, “Performance effect of virtual
processors” on page 120.

Note: The hierarchy of lists is defined as (highest to lowest):

1. Dispatch list
2. Eligible list
3. Dormant list
88 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

6.3.5 z/VM scheduling and the Linux timer patch
Linux servers that run a timer to do some small amount of work every 10 ms
break the z/VM scheduler model. With the 10 ms timer interrupt, CP classifies a
Linux virtual machine as a long-running task and assigns it to Q3.

Using the “on-demand” timer patch available from the IBM developerWorks site
corrects this situation. With this patch applied, Linux virtual machines are
dispatched less frequently and are less resource intensive. This can reduce the
number of Q3 servers competing for resources. Reducing the concurrent number
of tasks competing for resources reduces the contention felt by the shorter tasks.
We examine this effect in 7.3, “The Linux timer patch” on page 108.

6.4 CP scheduler controls
The CP scheduler can be influenced using two general types of controls:

� SRM controls globally influence the overall processor resources.

� Local controls influence how an individual virtual machine is regarded by the
scheduler.

6.4.1 Global SRM controls
Overall z/VM processor resources can be tuned using the CP SET SRM
command.

The DSPBUF control
The CP SET SRM DSPBUF command controls the number of users in the
dispatch list. It permits you to overcommit or under-commit processor and I/O
device resources. The command format is:

SET SRM DSPBUF i j k

Where:

i Specifies the number of dispatch list slots available for E1, E2, and
E3 users.

j Specifies the number of dispatch list slots available for E2 and E3
users.

k Specifies the number of dispatch list slots available for E3 users.

Note: Valid operand ranges are .32767 i j k 1≥ ≥ ≥ ≥
 Chapter 6. CPU resources and the z/VM scheduler 89

For example:

SET SRM DSPBUF 35 30 18

This command allocates 35 slots on the dispatch list:

� Five are guaranteed to E1 users ().

� 30 are available to E2 and E3 users, 12 of which () are guaranteed not
to be occupied by E3 users.

� 18 are available to E3 users (although these may be occupied by E1 and E2
users).

The LDUBUF control
The CP SET SRM LDUBUF command partitions the commitment of the system’s
paging resources.

The command format is:

SET SRM LDUBUF i j k

Where:

i Specifies the percentage of system paging resources available to E1,
E2, and E3 users.

j Specifies the percentage of system paging resources available to E2
and E3 users.

k Specifies the percentage of system paging resources available to E3
users.

The STORBUF control
The CP SET SRM STORBUF command partitions the commitment of real
storage in terms of pages based on the transaction class (E1, E2, E3) of a user.
This command enables you to overcommit or under-commit real storage.

Important: The DSPBUF control is a risky knob! We do not recommend
making adjustments to this control.

Definition: LDUBUF stands for loading user buffer. A loading user is a heavy
user of paging resources and is expected to have a high paging rate. A loading
user is defined as a user that takes five page faults within one time slice of
work. Because a time slice is relatively very small, any user that takes five
page faults within that time is totally consuming the equivalent of one paging
device. Use the INDICATE QUEUES EXP command to display the current
loading users.

35 30–

30 18–
90 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

The command format is:

SET SRM STORBUF i j k

Where:

i Specifies the maximum percentage of system storage available to
E1, E2, and E3 users.

j Specifies the maximum percentage of system storage available to E2
and E3 users.

k Specifies the maximum percentage of system storage available to E3
users.

Performance gains might be realized by overcommitting real storage when
expanded storage is available. When you overcommit storage this way, a virtual
machine’s working set is still computed as before, but the apparent real storage
available to virtual machines who want to enter the dispatch list appears larger.
Therefore, more virtual machines are allowed into the dispatch list. This might
result in higher paging rates, but often the benefit of reducing the eligible list and
moving users into the dispatch list will offset this increase.

The CP scheduler perceives storage requirement for virtual machines that do not
drop from queue to be much larger than actual. Because the scheduler cannot
determine the real storage requirements, in this case, raising the STORBUF
control can improve system performance. This effectively disables the storage
test discussed in 6.3.3, “Entering the dispatch list” on page 87.

Linux guests currently do not drop from queue due to:

� The effect of the Linux timer
(discussed in 7.3, “The Linux timer patch” on page 108)

� QDIO network devices
(discussed in 7.4, “QDIO and the dispatch queue” on page 112)

For Linux guests, setting the STORBUF control is an inexact science. There is
little difference in a STORBUF value of 900, as opposed to a value of 300; in both
cases, the storage test is likely disabled.

The MAXWSS control
The CP SET SRM MAXWSS command sets the maximum working set a normal
user on the dispatch list is allowed to have. If the user’s working set size exceeds

Note: Valid operand ranges are . The default values for
STORBUF are 125%, 105%, and 95%, respectively.

999 i j k 0≥ ≥ ≥ ≥
 Chapter 6. CPU resources and the z/VM scheduler 91

this percentage, that user is dropped back into the eligible list from the dispatch
list.

The command format is:

SET SRM MAXWSS m

Where:

m Specifies the maximum percentage of system pageable storage
available to a user.

MAXWSS is intended to prevent large virtual machines from acquiring an
inordinate amount of system memory at the expense of smaller users.

The DSPSLICE control
A virtual machine is assigned a dispatch time slice each time it is dispatched.
The dispatch time slice is calculated at system initialization based on real
processor speed and represents a fixed number of instructions processed. This
value can be changed using the CP SET SRM DSPSLICE command:

SET SRM DSPSLICE min

Where:

min Specifies the minimum dispatching time slice (in milliseconds).

When a virtual machine is first dispatched, it runs until:

� Its minor time slice interval expires.
� It completes the workload and proceeds to wait for more work.
� It enters CP mode.
� An interrupt occurs.

When redispatched, the virtual machine is assigned a new dispatch time slice (if
it relinquished the processor due to an interrupt, it is assigned the remaining
portion of the previous dispatch time slice).

Note: In order for this parameter to work as intended, virtual machines must
actually reside on the eligible list (that is to say, the scheduler must consider
the system to be storage constrained based on the STORBUF settings).

Note: Valid dispatching time slice values are in the range .100 min 1≥ ≥
92 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

When to use SRM controls
SRM controls can be used to ensure:

� Processor resources are utilized as much as possible.

� Thrashing situations do not occur.

� When performance is really bad (as will happen), some servers get
preferential access to processor resources.

For example, if performance is very bad, you would still want TCP/IP (or perhaps
a DNS server or security manager) to perform well. Thus, it is preferable to utilize
the SRM controls properly and not overuse the QUICKDSP option.

You should use STORBUF to over-allocate storage when virtual machines do
not drop from queue. In this situation, the dispatching and scheduling algorithms
become skewed. The true storage requirement is unknown, and proper
scheduling is impossible. Installations found that when running many servers
(even “idle servers” that never drop from queue), the perceived storage
requirement is very high. Using high STORBUF values to “over-allocate” storage
can improve this situation.

In an installation where the virtual machines do drop from queue, using
STORBUF to over-allocate storage might not be appropriate.

For this case, if there is expanded storage, the SET SRM XSTORE command
should be set to at least 50%, or even to its maximum value.

In environments where there is considerable paging, paging should be controlled
using the proper SET SRM LDUBUF command. The default LDUBUF in a paging
environment allows the paging subsystem to be 100% consumed (see 6.5,
“Analysis of the SET SRM LDUBUF control” on page 95). At the point where the
paging subsystem is at 100% utilization, intuitively, there would not be much
value at increasing the LDUBUF and allowing more users to consume paging
resources.

Important: The QUICKDSP option should be used for machines that need to
run when things are very bad. Set QUICKDSP to the select few that must
absolutely perform well.

Note: In order to drop from queue, Linux guests must run with the timer patch
installed (see 6.3.5, “z/VM scheduling and the Linux timer patch” on page 89)
and use an appropriate network architecture (see 7.4, “QDIO and the dispatch
queue” on page 112).
 Chapter 6. CPU resources and the z/VM scheduler 93

In 6.5, “Analysis of the SET SRM LDUBUF control” on page 95, we examine the
operation of some SRM controls.

6.4.2 The CP QUICKDSP option
The SET QUICKDSP command does one thing only, but it does that very well. It
should be used for service machines that are required when there are serious
memory or processor constraints.

The CP scheduler classifies virtual machines assigned the QUICKDSP option as
E0 virtual machines. An E0 virtual machine is added immediately to the dispatch
list whenever it has work to do, without waiting in the eligible list. The CP
scheduler bypasses the normal storage, paging, and processor tests when
moving E0 virtual machines from the eligible list to the dispatch list.

6.4.3 The CP SET SHARE command
One of the most misunderstood (and most misused performance options) is the
SHARE value of a virtual machine. The first choice of SHARE is to use
ABSOLUTE or RELATIVE. The second choice is the size of the SHARE.

The simplest way to decide which to use for a specific server is to answer the
question: As more users log on to this system, should this service machine get
more CPU or less?

� A relative share says this server should get a relative share of the processor,
relative to all virtual machines in the dispatch and eligible lists. As more users
log on, the share will drop.

� Absolute shares remain fixed up to the point where the sum of the absolute
shares is 100% or more, a rather confused state of configuration.

Servers such as TCP/IP or even DNS servers might have a requirement that
rises as the level of work increases. These servers should have ABSOLUTE
shares. All other users should use RELATIVE.

Size of share is both a business decision and a performance decision. For
example, if one server is assigned a very high share, which might be as much of
the system as the rest combined, one would expect this server to be absolutely
critical to your business. This server has the capability of taking resource
whenever it needs it, and if this server starts looping, would easily consume all
the resource allocated.

A simple way of looking at share values: If there is heavy contention for the
processor, what servers would you like to run.
94 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

TCP/IP is obvious, as are required services such as Domain Name System
servers. TCP/IP and other such required servers should have absolute values
that approach the CPU consumption that would be required at peak loads, never
more than that.

6.5 Analysis of the SET SRM LDUBUF control
The purpose of the SET SRM LDUBUF command is to control thrashing.
Thrashing is a situation where paging is at a point where less work is being
accomplished because of contention for paging and storage devices. The
following analysis shows some of the key points in evaluating the use of
LDUBUF.

When the loading capacity is evaluated by the scheduler, the number of paging
devices is the “loading capacity.” Setting LDUBUF to the default of 100 85 65
allows 100% of the total capacity (the number of paging devices) to be utilized.
Thus, if there were seven paging devices, seven users that were considered
“loading” would be allowed onto the dispatch list. Additional users would be
delayed on the eligible list until one or more of the existing loading users either
dropped from the list or obtained their working set in storage and stopped taking
page faults.

For this analysis, a benchmark was developed with 100 servers that would
allocate storage, perform a function, and release the storage, typical of many
Linux environments. What the measurements show is that LDUBUF at the
default level will allow the total paging subsystem to be 100% consumed.

6.5.1 Default setting analysis
Example 6-3 on page 96 shows CPU utilization and paging rates using the
default settings for LDUBUF and STORBUF.

Note: The paging DASD devices are RAMAC Virtual Array (RVA) units.
 Chapter 6. CPU resources and the z/VM scheduler 95

Example 6-3 CPU and paging with default LDUBUF/STORBUF settings

Report: ESASSUM Subsystem Activity Velo
Monitor initialized: on 2064 serial C0ECB Firs

 <---Users----> <Processor> Storage (MB) <-Paging--> <-----I/O
 <-avg number-> Utilization Fixed Active <pages/sec> <-DASD-->
Time On Actv In Q Total Virt. User Resid. XStore DASD Rate Resp
-------- ---- ---- ---- ----- ----- ----- ------ ------ ---- ---- ----
17:26:00 154 130 85.0 121 81 134.6 2874.7 523 5025 400 22.9
17:27:00 154 133 71.0 106 60 132.7 2870.5 245 5027 408 22.4
17:28:00 154 129 78.0 96 49 134.2 2870.1 225 5269 415 19.8
17:29:00 154 129 74.0 161 127 133.4 2872.3 299 5546 540 15.4
17:30:00 154 129 83.0 152 123 133.5 2871.0 302 5572 576 14.7
17:31:00 154 129 82.0 108 87 134.7 2871.7 417 5431 599 13.7
17:32:00 154 132 82.0 116 100 134.1 2875.1 445 5335 763 11.2
17:33:00 154 128 81.0 115 100 134.2 2870.4 478 5241 858 10.2
17:34:00 154 130 43.0 135 121 132.6 2877.8 615 4671 929 9.3
17:35:00 154 87 59.0 109 99 132.4 2879.9 1006 3615 789 9.2

The report shows CPU utilization varied from 96% to 161% with a paging rate to
DASD of over 5000 pages/second. The paging to expanded storage was
400-500 pages/second.

6.5.2 User queue analysis
Example 6-4 on page 97 shows a queue analysis for a benchmark class of users
named IUCVRO. These users normally drop from queue when idle, as they use
the IUCV driver and have the timer patch applied (as discussed in 7.4, “QDIO
and the dispatch queue” on page 112).
96 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 6-4 User queue analysis

Report: ESAUSRQ User Queue and Load Analysis
Monitor initialized: on 2064

 <-----------User Load------------>
UserID Logged Non- Disc- Total Tran
/Class on Idle Active conn InQue /min
-------- ------ ----- ------- ------ ----- ----
17:26:00 154.0 . 130.0 . 85.0 4590
Hi-Freq: 154.0 130 130.0 144 93.2 4715
 User Class Analysis
*Servers 18.0 5 5.0 15 2.1 46.0
*Keys 4.0 3 3.0 4 2.1 10.0
*TheUsrs 14.0 5 5.0 8 2.0 79.0
IUCVRO 99.0 99 99.0 99 67.9 4580
REDHAT 9.0 9 9.0 9 9.0 0
SUSE31 5.0 5 5.0 5 6.0 0
SUSE64 5.0 4 4.0 4 4.0 0

Note that at this peak time, of the 99 logged on, 99 are performing some amount
of work each minute, making them all “active” and “Non-idle.” Out of the 99, on
average 67.9 (68) are in queue. One other important note: Service machines that
drop from queue are identified as having transactions. Note that the other Linux
servers do not have transactions; they do not drop from queue.

6.5.3 DASD analysis
Example 6-5 on page 98 shows an analysis of direct access storage device
(DASD) during the default run.
 Chapter 6. CPU resources and the z/VM scheduler 97

Example 6-5 Analysis of paging devices

--
Report: ESADSD2 DASD Performance Analysis
Monitor initialized: on 2064 ser

 Dev Device <--SSCH--> <%DevBusy> <SSCH/sec->
 No. Serial Type Total ERP Avg Peak avg peak
---- ------ ------ ------ --- ---- ---- ----- -----
17:26:00
Top DASD by Device busy
1590 430PG5 3390-3 1864 0 98.5 98.5 31.1 31.1
15D0 430PG6 3390-3 2051 0 98.5 98.5 34.2 34.2
1551 430PG8 3390-3 1987 0 98.1 98.1 33.1 33.1
1550 430PG4 3390-3 1915 0 98.1 98.1 31.9 31.9
1511 430PG7 3390-3 1831 0 97.9 97.9 30.5 30.5
3753 430PAG 3390-3 2848 0 97.9 97.9 47.5 47.5
3B44 430PG2 3390-3 4058 0 97.4 97.4 67.6 67.6
1512 LX1512 3390-3 1150 0 26.1 26.1 19.2 19.2
1552 LX1552 3390-3 1217 0 24.5 24.5 20.3 20.3
15D2 LX15D2 3390-3 828 0 20.9 20.9 13.8 13.8
End Top DASD by Device busy

Notice the seven page devices that show up in the top 10 device list on the
DASD Performance report. These devices are 98% busy and can not perform
any additional work. It should be obvious that allowing more loading users into
the queue will not accomplish any additional work. In this case, it would be better
to keep some of these users on the eligible list.

Example 6-6 on page 99 shows an analysis of the channel subsystem.
98 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 6-6 Analysis of channel subsystem

Report: ESADSD1 DASD Configuration
Monitor initialized:
Monitor period: 13080 seconds (
--
 Dev Sys Device <CHPIDS OnLn>
 No. ID Serial Type SHR 01 02 03 04
---- ---- ------ ------ --- -- -- -- --
1511 088D 430PG7 3390-3 NO 42 57 24 4B
1512 088E LX1512 3390-3 NO 42 57 24 4B
1550 08CC 430PG4 3390-3 NO 42 57 24 4B
1551 08CD 430PG8 3390-3 NO 42 57 24 4B
1552 08CE LX1552 3390-3 NO 42 57 24 4B
1590 090C 430PG5 3390-3 NO 42 57 24 4B
15D0 094C 430PG6 3390-3 NO 42 57 24 4B
15D1 094D LX15D1 3390-3 NO 42 57 24 4B
15D2 094E LX15D2 3390-3 NO 42 57 24 4B
3750 0F0A 430RES 3390-3 NO 1B 27 32 3D
3753 0F0D 430PAG 3390-3 NO 1B 27 32 3D
3B44 12FE 430PG2 3390-3 NO 41 4C 36 56

If adding page devices were an option, there should be sufficient channel
capacity to support additional devices. In this DASD configuration, several paging
devices share four channel paths (CHPIDs). Five paging devices share CHPIDs
42, 57, 24, and 4B.

Now that we know what channel paths are being used, we evaluate the capacity
of the channels being utilized in Example 6-7.
 Chapter 6. CPU resources and the z/VM scheduler 99

Example 6-7 Analysis of channel capacity

Report: ESACHAN Channel Performance Ana
Monitor initialized: on
--
 <Pct Channel> <extended->
Time/ Utilization CMG Utilization
CHPID LPAR Total Shrd Type LPAR TOTAL
-------- ---- ----- ---- ---- ----- -----
24 . 93.3 Yes 1 86.9 86.9
42 . 90.0 Yes 1 84.9 85.7
4B . 85.0 Yes 1 85.6 85.7
57 . 93.3 Yes 1 88.4 89.0

There are different measurements provided by the monitor. This report shows
three different values:

� The <Pct Channel> Utilization Total number is a sampled value.
Sampling is performed by CP at the default high-frequency sample rate of 1
sample/second. In this case, CP sampled the channels and found them about
90% busy.

� The <extended> reported values are provided by the I/O processor.
These measurement provide values at both the LPAR and TOTAL levels. If
multiple LPARs were sharing channel paths, these values could be different
(due to the amount of time the CHPIDs were in use by other LPARs).

Because of the differences in data sources, there will be some differences. In this
case, all values show the channel paths at above 85%. This is too high to support
more devices and is a performance issue. To reduce this utilization, paging must
be reduced or more channel paths utilized.

6.6 Virtual Machine Resource Manager
Virtual Machine Resource Manager (VMRM) is a new facility available in z/VM
4.3. It runs in a service virtual machine (VMRMSVM) and dynamically manages
the performance of workloads. VMRM uses a set of user-specified workload
definitions and goals, compares these with the achieved performance, and
makes adjustments accordingly. (It is conceptually somewhat similar to the
Workload Manager used by z/OS.) The basic idea is to allow performance
objectives to be set in a manner more closely aligned with business objectives
than has been the case previously.

VMRM is only effective in a constrained environment because it works by
prioritizing workloads in order to enhance their access to resources, and
accordingly restricts other work’s access to those resources. If the z/VM system
100 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

is not constrained, VMRM can’t enhance access to resources because they are
readily available anyway.

A workload is a collection of one or more virtual machines that are to be treated
as an entity for the purpose of performance management. Each workload has
certain goals defined for it. These goals are for DASD and CPU utilization. A
workload can have a DASD goal, a CPU goal, or both. A goal represents the
relative importance of a workload for the particular installation. Configuration
changes can be made at any time, but require the VMRM service machine to be
stopped and restarted to make them effective.

VMRM uses CP MONITOR data to determine the level of activity in the system
and whether or not workloads are meeting the defined goals. VMRM allows
some latitude, 5%, in making this determination (this helps avoid overreaction
when a workload is near its goals).

Every minute (the default) VMRM examines the system and workloads and picks
a workload that is failing to meet its goals. If it finds one, it then uses the CP SET
SHARE and CP SET IOPRIORITY commands to adjust the workload to give it
more access to the resource or resources for which the goal or goals were not
met. VMRM remembers which workloads it adjusted recently and does not alter
them again for a while. Instead, it might choose another workload to adjust at the
next interval.

VMRM cannot adjust users with fixed CPU or I/O priorities. If you have defined
users with absolute or hard limited SHARE, or absolute I/O priority, this will have
to be changed for VMRM to manage them. This also allows specific users that
otherwise would be treated as part of a workload to be effectively excluded from
it, but it would normally be more sensible not to define such a user as part of a
workload in the first place.

6.6.1 Implications of VMRM
Because VMRM sits there adjusting performance parameters at frequent
intervals, it is able to adjust to changing conditions. As the workload on the z/VM
system changes over the course of a day, VMRM can make adjustments to the
defined (and running) workloads in order to try to make them meet the goals
defined for them. (It cannot ensure workloads meet their goals because it cannot
create resources out of thin air.)

Because VMRM adjusts z/VM tuning parameters, it might conflict with manual
efforts to tune z/VM. In particular manual use of the CP SET SHARE and CP
SET IOPRIORITY commands is likely to cause problems, or at least unclear
results.
 Chapter 6. CPU resources and the z/VM scheduler 101

Support for I/O priority queueing was added to z/VM to support VMRM. This is
probably as significant as the addition of VMRM itself.

CP SET IOPRIORITY and the associated directory statement were added to
z/VM to support VMRM. However, these can also be used for manual tuning
instead.

Because VMRM uses CP MONITOR data, it might be affected by other users of
the CP MONITOR data, and vice versa. As is always the case when more than
one thing uses CP MONITOR data, some care in setup is required.

As a result of its dynamic nature, VMRM makes benchmarking difficult.
Benchmarking typically requires repeatable conditions, and the continual
adjustments of VMRM make repeatable conditions unlikely.

VMRM is not directly influenced by memory usage and has no direct effect on
memory usage.

6.6.2 Further information about VMRM
For further information about VMRM, refer to z/VM V4R3.0 Performance,
SC24-5999. VMRM concepts are introduced in z/VM, VSE, and Linux Technical
Conference foils: z/VM Resource Management, by Christine Casey, available at:

http://www.vm.ibm.com:2003/pdfs/V612up.pdf
102 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.vm.ibm.com:2003/pdfs/V612up.pdf

Chapter 7. Tuning processor
performance for z/VM Linux
guests

This chapter discusses tuning processor performance for Linux guests. Topics
include:

� Processor tuning recommendations

� The effect of idle servers on performance

� The Linux timer patch

� QDIO and the dispatch queue

� Infrastructure cost

� Performance effect of virtual processors

7

© Copyright IBM Corp. 2003. All rights reserved. 103

7.1 Processor tuning recommendations
CPU time is limited to the number available processors. Steps should be taken to
reduce processor requirements:

� Eliminate unnecessary Linux services.
Default Linux guest installations typically start services that probably are not
used. These services consume CPU cycles even if no useful work is
performed. Remove unneeded services from the Linux startup sequence.

� Remove unneeded cron-initiated tasks.
Look for and remove unneeded tasks started by cron.

� Reduce processor usage by idle Linux guests.
Ensure idle Linux guest do not consume unnecessary processor resources.
Thing to consider are:

– Install the timer patch.
Waking the Linux scheduler 100 times per second wastes processor
resources.

– Eliminate “are you there” pings.
Do not ping an idle guest simply to verify that it is alive.

– Do not measure performance on idle guests.
Measuring an idle guest costs processor resources.

� Consider infrastructure processing requirements.
Consider the cost of various infrastructure configurations, such as:

– Router configuration
Routing costs are discussed in Chapter 9, “Measuring the cost of OSA,
Linux, and z/VM networking” on page 143.

– Installation and cloning costs
See 7.5.2, “Installing new systems” on page 115 for a comparison of cost
of installing Linux guests.

� Prioritize workloads.
When there are processor constraints, use share options to determine what
work gets done.

More performance tips can be found on at Velocity Software’s Web site at:

http://linuxvm.com

7.1.1 Processor performance on a constrained system
When the processor is constrained, the other resources will be underutilized.
There is not much point in tuning other subsystems when the processor is
already overcommitted. When the processor is constrained, all options to reduce
104 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://linuxvm.com

processor requirements should be evaluated. We discuss some options in 7.6,
“Performance effect of virtual processors” on page 120.

7.2 The effect of idle servers on performance
In a shared resource environment, there is no room for unnecessary processes.
Servers that run cron jobs for historical reasons should be redesigned.

Under z/VM, as a shared resource environment, it is not optimal to wake up
servers to make sure the servers are active, or to monitor them to query current
activity. In this environment, the virtual machines will be tailored for optimal
performance and having unneeded interrupts or work being performed detracts
from resources available for productive work.

In a virtual environment, one of the most expensive use of resources is waking
up an idle server simply to perform a trivial task. It is important to apply the Linux
timer patch in order to reduce resource usage by idle Linux guests (see 6.3.5,
“z/VM scheduling and the Linux timer patch” on page 89).

Pinging a server to see if it is alive keeps the server active. This uses resources
that are likely better utilized by other servers performing real work. This expense
should always be monitored and minimized.

Two common mistakes made in a virtual server infrastructure is to ping
applications to ensure they are “alive” and to monitor the performance of the
virtual servers. When idle, the servers would normally not take significant
amounts of either storage or processor resource. But when either the
applications are pinged or the servers are monitored, the server must have
resident storage to provide the appropriate positive responses. A better
approach in this virtual environment for monitoring is to utilize the existing and
mostly free (in terms of resource requirements) VM monitor.

By default, most Linux distributions start several services that might not be
needed. To illustrate the cost of these services, we show the CPU usage and
DASD I/Os in Figure 7-1 on page 106.
 Chapter 7. Tuning processor performance for z/VM Linux guests 105

Figure 7-1 The effect of unneeded daemons on CPU and DASD usage

00:01 00:06 00:11 00:16 00:21 00:26

Elapsed time

1

2

3

4

5

6

7
(s

ec
)

C
P

U
 t

im
e

Without
daemons

With
daemons

Unneeded daemons
CPU usage

00:01 00:06 00:11 00:16 00:21 00:26

Elapsed time

100

200

300

400

500

600

700

800

900

D
A

S
D

 I/
O

s

Without
daemons

With
daemons

Unneeded daemons
DASD I/O
106 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Services that might be considered unnecessary in a Linux guest include:

� sendmail
If receiving or delivering mail is not required on the Linux guest, consider
stopping the sendmail server.

� anacron, atd, and cron
These daemons are responsible initiating tasks at regular intervals. If no
useful tasks are automatically scheduled, stop these services.

� autofs, nfs, nfslock, and portmap
The autofs daemon is responsible for automatically mounting file systems; nfs
and nfslock provide Network File System (NFS) support; portmap provides
Remote Procedure Call (RPC) services required by NFS.

� lpd and xfs
Printing services are provided by the lpd daemon; xfs provides X-Windows
fonts.

� inetd/xinetd
The inetd (or the replacement xinetd) daemon manages Internet services
such as FTP and Telnet.

7.2.1 Network Time Protocol daemon
Linux on z/VM has some problems with keeping track of time. There are two
reasons for this:

� We believe there is a bug in the kernel that causes the Linux daytime to
drift in periods of high activity.
This should be fixed, but it might need some time to convince people of the
exact cause. The “on-demand timer” patch was reworked for the 2.4.17
kernel; we are not sure whether this kernel exhibits the same problem.

� Although the zSeries time-of-day (TOD) clock does not drift much, many
people set the clock manually at IPL (using a watch as reference).
This is not an exact way to set the clock, and the effect is that the z/VM time
has a constant offset to the official time. Even if Linux would use the TOD
clock to tell time, it would be different from external guests using NTP for it.
This might impact distributed applications (for example, because time stamps
on shared files are wrong).

A suggestion has been to fix both of these issues by running ntpd on each Linux
guest. This will talk to NTP servers and adjust the Linux clock continuously to
keep it synchronized to the rest of the world. The disadvantage of this approach
is that it is very expensive to do so. A process wakes up every second to adjust
the clock, and this keeps the server busy all the time.
 Chapter 7. Tuning processor performance for z/VM Linux guests 107

If the first problem was fixed, all we need is something to set the time initially
when the guest is IPLed. We must be able to use the z/VM command SET VTOD
for this to synchronize the virtual TOD clock of a Linux guest with the virtual TOD
clock of one other virtual machine that synchronized (once after IPL) with NTP
servers outside.

7.3 The Linux timer patch
Traditionally, the Linux kernel keeps track of time using a timer that interrupts the
kernel at a constant rate. On each interrupt, the global variable “jiffies” is
incremented and various queues inspected for work. On dedicated hardware,
this has a minimal performance effect. However, when running Linux running on
z/VM, this is not a good idea.

Although this method of keeping track of time may not be the most efficient, the
biggest problem for Linux on z/VM is that the Linux guest uses a little bit of CPU
cycles every 10 ms. This causes the z/VM scheduler to keep the guest “in queue”
(and therefore, unused memory pages in the Linux virtual machine cannot be
trimmed, as discussed in 2.3, “z/VM use of memory” on page 13). With many
Linux guests holding on to their working sets, z/VM memory will fill up rather
quickly.

This problem is addressed with the so called “on-demand timer” patch that can
be downloaded from the IBM developerWorks Linux for zSeries and S/390 home
page:

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml

This patch does away with the 10 ms timer tick and sets the timer to pop only
when the kernel needs to wake up. Even though this does not make a real “zero
load idle Linux guest,” the periods between two timer ticks are normally long
enough for z/VM to recognize the guest as idle (and start taking measures to trim
memory pages).

The VM/RTM output in Example 7-1 on page 109 shows two virtual machines:

� RMHTUX01 runs a kernel with the timer patch applied.

Note: We did not have time to implement this solution, so we can only
speculate on what performance improvement it might yield.

Note: With the 2.4.19 kernel (as used in SuSE SLES 8), the on-demand timer
is part of the main source. It is enabled by writing to the
/proc/sys/kernel/hz_timer pseudo variable.
108 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml

� LNXR09 runs an unpatched kernel.

The %CPU column shows the Linux machine with the on-demand timer uses less
CPU resources.

Example 7-1 Two Linux guests, one with timer patch applied

<USERID> %CPU %CP %EM ISEC PAG WSS RES UR PGES SHARE VMSIZE TYP,CHR,STAT

LNXR09 .62 .06 .56 .20 .00 28K 34K .0 0 100 128M VUX,DSC,DISP
RMHTUX01 .01 .00 .01 .00 .00 23K 24K .0 0 100 128M VUX,DSC,DISP

Even though saving CPU resources is very welcome, the real big benefit of the
changed timer behavior is that z/VM is able to recognize that the virtual machine
as idle. When a virtual machine does not consume resources for more than 300
ms, the z/VM scheduler assumes that a transaction has ended and that the
virtual machine went into a long-term wait. At that point, z/VM will start to page
out some of the working set of the idle virtual machine when main memory is
constrained. When the virtual machine becomes busy again (even if only after a
second or less), the page fault handling will page in necessary portions of the
virtual machine’s memory. This reduces the footprint of the idle Linux virtual
machine.

When a Linux guest with the on-demand timer still uses a lot of CPU time when
idle, that is normally caused by some process or kernel thread requesting
frequent wakeup calls. In some cases, these frequent wakeup calls are part of
the application design, and in other cases, it is simply a bug.

Note: Even with the on-demand timer, an idle Linux virtual machine is still
reported as active by VM because it wakes up frequently. Be careful when
using the terms “idle” and “active” in this context. The idle Linux machine
probably behaves more like an interactive CMS user.

Important: In the Linux 2.4.7 kernel, a bug in ReiserFS causes the virtual
machine to wake up every 50 ms. Even though this is not as bad 10 ms, it is
not long enough for z/VM to recognize transactions. We believe it is safe to
assume this is a bug, because later kernels cause the ReiserFS thread to
wake up every five seconds. We can argue whether a wakeup every five
seconds is the best way to implement that particular function, but the damage
is certainly less than with 50 ms.
 Chapter 7. Tuning processor performance for z/VM Linux guests 109

7.3.1 Analyzing the timer ticks
When the on-demand timer patch is applied to the kernel, the number of timer
interrupts goes down. In some systems, the number of timer interrupts stays
rather high. If the cause is not obvious, you can look at the number of timer ticks
and the process requesting them.

A simple way to count the number of timer ticks is to run a TRACE EXT in the
Linux virtual machine for a fixed period of time and look at the output.
Example 7-2 illustrates a program executed from a privileged user ID (class C) to
count timer ticks.

Example 7-2 Sample program (COUNTEXT EXEC) to count timer ticks

/* COUNTEXT EXEC Trace timer interrupts to count them */
arg uid ; if uid = '' then exit 24
cmd = 'CP SEND CP' uid

cmd 'SPOOL PRT PURGE'
'CP SLEEP 1 SEC'
cmd 'TRACE EXT 1004 PRINTER RUN'
'CP SLEEP 60 SEC'
cmd 'SPOOL PRT' userid() 'CLOSE'
'CP SLEEP 1 SEC'
cmd 'TRACE END ALL'

The SLEEP command in the program lets the target Linux virtual machine run for
60 seconds and closes the printer spool file after that time. We execute the script
in Example 7-3.

Example 7-3 Executing COUNTEXT EXEC

countext rmhtux02
RDR FILE 0180 SENT FROM RMHTUX02 PRT WAS 0018 RECS 0083 CPY

The spool file arrival message indicates TRACE wrote 83 records to the spool file
in the one minute interval the script was sleeping. Expect this number to vary
between tests.

When the number of timer ticks is higher than expected, we trace the process
requesting the wakeup calls. A good address to trace is the entry point of the
schedule_timeout() function in the kernel. You can its address from the current
System.map file on your system. Alternatively, you can use /proc/ksyms, as
shown in Example 7-4 on page 111.
110 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 7-4 Determining the address of schedule_timeout

cat /proc/ksyms | grep schedule_timeout
0010ae74 schedule_timeout

Start the trace from the 3270 console; if you use the hcp command through a
Telnet session, you create work on the Linux guest that obscures the
measurements. The following CP TRACE command prints the value of current
on entry to the schedule_timeout() function:

#CP TRACE I R 10AE74.2 TERM RUN CMD D C40.4

Example 7-5 shows the trace output.

Example 7-5 Tracing the value of current at entry to schedule_timeout()

-> 0010AE74' STM 908FF020 >> 005C3EB8 CC 0
V00000C40 005C4000 06 L00000C40
 -> 0010AE74' STM 908FF020 >> 01F49E30 CC 0
V00000C40 01F4A000 06 L00000C40
 -> 0010AE74' STM 908FF020 >> 005C3EB8 CC 0
V00000C40 005C4000 06 L00000C40
 -> 0010AE74' STM 908FF020 >> 005C3EB8 CC 0
V00000C40 005C4000 06 L00000C40

Using the sort stage of CMS Pipelines, a simple pipe gives the breakdown per
process for our one-minute interval. Using grep against the output of ps -ef, we
identify the process name.

We can further enhance the trace to show which timer the process sets. From the
source code and the generated S/390 assembler instructions, we find that
register R2 contains the length of the requested delay in jiffies. Using this
information, we are able to produce Table 7-1 on page 112 to identify which
processes are responsible for generating timer ticks.

Tip: The current variable identifies the process running when the call to
schedule_timeout() is made. The task_struct for the process is located 8192
(0x2000) bytes before current. The process identifier (PID) is located at offset
0x70 into the task_struct.
 Chapter 7. Tuning processor performance for z/VM Linux guests 111

Table 7-1 Breakdown of one minute Linux timers

As seen in the table, the kswapd kernel process causes Linux to wake up every
second. This kernel thread monitors the Linux memory usage, waking up every
second to adjust counters and checking if memory pages need to be swapped
out (as discussed in 3.2.1, “Page cleaning” on page 24). One could argue that on
an idle system, there is little reason for the daemon to wake up because nothing
has changed in the system.

The nscd processes requesting wakeup calls every two to 15 seconds stand out
(nscd caches user and group information; however, this is not needed when
using flat files in /etc directory of a local disk). This process is started in the
default SuSE installation. We had not removed it from the startup sequence.

7.4 QDIO and the dispatch queue
We found that some Linux guests stay in the dispatch queue (Q3, in fact) even
with the “demand timer” active (see 7.3, “The Linux timer patch” on page 108).
The VM/RTM output shown in Example 7-6 on page 113 shows two virtual
machines (RMHTUX01 and RMHTUX02) with the timer patch applied. For
comparison, the LNXR09 Linux guest does not have the timer patch.

Address Jiffies Count PID

005C4000 100 60 5 [kswapd]

005EC000 500 12 1 init

01F4A000 201 30 173 /usr/sbin/nscd

01F46000 1501 4 174 /usr/sbin/nscd

01F7C000 1501 4 167 /usr/sbin/nscd

0201A000 6001 1 153 /usr/sbin/cron

02024000 2147483647 2 139 /sbin/slogd

03FFE000 500 12 8 [kupdated]

Note: The work done at each wakeup call is minimal. For the 113 wakeup
calls per minute, our system uses 110 ms of CPU time, or approximately 0.1%
of a single CPU. When we stopped the nscd daemons, the number of timer
interrupts went down to 87 per minute. CPU usage dropped to 20 ms per
minute, or 0.02% of a CPU.
112 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 7-6 Three Linux guests, two with the timer patch applied

<USERID> %CPU %CP %EM ISEC PAG WSS RES UR PGES SHARE VMSIZE TYP,CHR,STAT

LNXR09 .62 .06 .56 .20 .00 28K 34K .0 0 100 128M VUX,DSC,DISP
RMHTUX01 .01 .00 .01 .00 .00 23K 24K .0 0 100 128M VUX,DSC,DISP
RMHTUX02 .01 .00 .01 .00 .00 17K 17K .0 0 100 128M VUX,IAB,DISP

The %CPU column shows that the Linux guests with the on-demand timer indeed
use far less CPU resources.

The IAB status for RMHTUX02 indicates a difference from RMHTUX01 (although
both have the on-demand timer patch). z/VM considers RMHTUX02 to be an
interactive user. In Example 7-7, the output of an INDICATE QUEUES command
confirms RMHTUX01 is in Q3 while RMHTUX02 is not.

Example 7-7 INDICATE QUEUES showing timer patch guest in Q3

CP IND QUEUE
RSCS Q3 PS 00001224/00001223 RMHTUX01 Q3 PS 00023149/00022411
LNXR06 Q3 PS 00007003/00005923 LNXR04 Q3 PS 00007008/00005976
...
LNXR05 Q3 PS 00007008/00005880 LNXR02 Q3 PS 00007015/00005851
VCOLLECT Q0 PS 00000910/00000889 ESATCP Q2 PS 00000584/00000583
RMHTUX02 Q1 PS 00017115/00017094

The RMHTUX01 guest seems to stay in the queue all the time. Because the
scheduler considers a guest idle after 300 ms of inactivity, this indicates that
RMHTUX01 recorded at least 200 timer ticks in a minute interval. Further study
reveals the guest consumed some 130 ms of CPU time in that one minute
interval. This makes it unlikely the timer is keeping the guest in the queue.

The difference between the two virtual machines is that RMHTUX01 owns a
queued direct input/output (QDIO) network device, while RMHTUX02 is
connected through IUCV.

After discussion with z/VM Development, we concluded CP did not drop the
RMHTUX01 virtual machine from queue because a read I/O event was awaiting

Note: The fact that RMHTUX02 shows up in the queue is purely coincidental.
A Linux guest with the on-demand timer is expected to be frequently dropped
from queue by the scheduler.

Note: In 7.3.1, “Analyzing the timer ticks” on page 110, we demonstrate how
to use the TRACE command to observe timer ticks.
 Chapter 7. Tuning processor performance for z/VM Linux guests 113

completion on two of its three QDIO devices. A virtual machine normally remains
in queue during active I/O (on the expectation that the I/O will complete shortly).
In the case of QDIO, the outstanding I/O is not an actual pending read operation.
Instead, it is simply part of the protocol. The same situation applies to virtual CTC
connections (where an outstanding “read” on one end allows the other end to
send data).

APAR VM63282 has been opened to fix this situation in z/VM. We have tested an
experimental version of the fix and confirmed that it does indeed allow CP to drop
virtual machines from queue. This is confirmed by the output of the CP
INDICATE command shown in Example 7-8. Here, 100 Linux guests with the
on-demand timer patch applied are connected to a z/VM Guest LAN.

Example 7-8 Dropping QDIO virtual machines from queue

CP IND
AVGPROC-003% 02
XSTORE-000000/SEC MIGRATE-0000/SEC
MDC READS-000001/SEC WRITES-000001/SEC HIT RATIO-090%
STORAGE-052% PAGING-0001/SEC STEAL-000%
Q0-00000(00000) DORMANT-00094
Q1-00020(00000) E1-00000(00000)
Q2-00003(00000) EXPAN-002 E2-00000(00000)
Q3-00014(00000) EXPAN-002 E3-00000(00000)

PROC 0000-004% PROC 0001-002%

LIMITED-00000

Even though these 100 guests wake up every second to perform memory
management housekeeping, only 20 on average remain in queue. This allows
CP to steal idle pages from those guests as memory becomes constrained.

7.5 Infrastructure cost
Some of the resources used on z/VM to run Linux virtual machines can be seen
as infrastructure cost: The resources used to run these utility services are not
available for use by Linux virtual machines to run business applications. This

Note: Before applying the fix, these virtual machines all showed up in Q3 and
E3.

Note: CP steals idle memory pages from virtual machines in queue. However,
it steals pages more aggressively when virtual machines drop from queue.
114 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

does not mean that these utility services are not necessary, however it does
mean that it is often worthwhile to review those services and see whether
savings can be realized.

7.5.1 Formatting disks
The zSeries DASD must be formatted for Linux to use it. The dasdfmt program
supplied with the Linux distributions can be used for that. Formatting of a 3390-3
volume on RVA takes about 15 minutes elapsed time. As we expected, formatting
a disk takes only a very small amount of CPU cycles, about six seconds for a
3390-3 volume.

The real cost for formatting disks comes from the working set of the virtual
machine. When you run dasdfmt in the same virtual machine that you just used
for compiling the kernel, the entire working set of the virtual machine is kept in
storage during the formatting.

CMS also requires that disks are formatted before use and uses the CMS
FORMAT command to do so. Both Linux and CMS normally format the 3390
tracks with 4 K blocks. The difference between Linux and CMS format is minimal.
Although using CMS to format the disk uses even less CPU cycles (about 1.6
seconds), the big difference is in the working set of the virtual machine. CMS
FORMAT runs with 518 pages, so approximately 0.5 MB-hours for a single
volume (1.6% of what Linux uses for the same task).

7.5.2 Installing new systems
There are many different ways to install Linux systems. New systems can be
“cloned” from an existing “golden image,” or you can do a fresh install for each
system. For a fresh install, you can IPL from disk, from tape, or from the virtual
card reader. The packages can be loaded from a local disk or from a remote FTP
or NFS server. This is true when installing Linux on discrete servers, as well as

Note: Using the formula , we can derive a measure of the
relative “cost” of memory usage. Using this calculation, we can express the
cost of formatting a 3390-3 volume in a 128 MB Linux guest as 32 MB-hours.

Note: While it is tempting to view ECKD formatting as the equivalent of a
“low-level format” as used on some PC disks, this is not completely correct.
With ECKD, you can format and write in a single operation. If you plan to put
data on these disks immediately after formatting, you can save a lot of
resources by combining these steps. Clearly, you can not use Linux tools to
do so, because Linux requires the disk to be formatted separately first.

Memory Time×
 Chapter 7. Tuning processor performance for z/VM Linux guests 115

when you install Linux in a virtual machine (though with Linux on z/VM you have
some extra options to automate the install process).

When installing Linux on discrete machines, the thing that matters most is to get
the job done with minimal effort (and in the least amount of time). With Linux on
zSeries things are a bit different because the virtual machines share resources.
The resources used for the installation of a new Linux system can not be used by
other Linux virtual machines running the business applications. Unless your
z/VM system has plenty of unused resources, you probably should also
concentrate on doing the install using the least amount of resources.

We compared five ways to install a new Linux system on z/VM:

� RDR + FTP + Router
The virtual machine is connected through IUCV to a VM TCP/IP stack as the
virtual router. It IPLs from the virtual reader and installs the RPM packages
through FTP.

� RDR + FTP
Similar to the first method, but in this case, the Linux virtual machine has its
own OSA device. This avoids the cost in the VM TCP/IP virtual router.

� QuickStart
A single (R/O) minidisk is used that holds the starter system and a copy of the
RPM packages. The minidisk is IPLed to get the ramdisk system (instead of
IPL from virtual reader). The minidisk is then mounted in the ramdisk system
to install the packages (which avoids the network traffic and FTP server cost).

� Breeder
A separate Linux virtual machine (the Breeder) is used. The Breeder does a
R/W link to the target minidisks of the new system and makes a copy of a
preinstalled system onto the target minidisks. After the file system is copied,
the “personalization” is done (host name and IP address, for example). This
method also avoids the unzipping of the RPM packages.

� GUI + FTP + Router
With SuSE SLES 8, there is a working X-Windows version of YaST. Even
though this is a different installer and kernel version, we include it in the
measurements to show some of the differences between the install methods.

Note: The QuickStart install method should not be confused with Red Hat
Kickstart. Kickstart automates installation by obtaining installation parameters
from a configuration file; no user prompting is required. The biggest savings, if
any, are in elapsed time for the install, and therefore, also in the memory
usage. For SuSE, there are options such as Auto-YaST and Alice, but the
versions we have seen still lacked some of the install options that are
essential for Linux on zSeries.
116 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

For each of the four tests, we installed the same minimal set of packages, just
enough to get a working Linux system. The 130 packages in this set are
approximately 140 MB worth of RPM files to be loaded. When unpacked during
the install, this results in 200 MB worth of data on the root device.

The Breeder install process is a home-grown installation process that we used.
Even though the numbers are not immediately applicable to your own installation,
we believe it is a representative measurement for what people are doing with
various cloning approaches and DDR copies of minidisks.

Elapsed time comparison
In Figure 7-2, we show the elapsed time for the five installation methods.
Because each install process uses some manual steps (navigation though YaST
screens) this is not easy to measure. To get an idea of the elapsed time, we
recorded the CPU usage per minute and discarded the intervals where the Linux
system used little more than the idle load.

Figure 7-2 Elapsed time for installation using different methods

The Breeder method is clearly the fastest. This should not be a big surprise
because it avoids some steps that are known to be relatively slow on zSeries. It is
a bit surprising to see that taking out the virtual router does not make the second
method faster. The reason for this is that the VM TCP/IP stack is more efficient in
driving the OSA device (an OSA-2 Token Ring in this case) than the Linux LCS
driver. We believe this difference can be attributed to the use of Diagnose98 in
the VM TCP/IP stack.

RDR + FTP + Router

RDR + FTP

QuickStart

Breeder

GUI + FTP + Router

0 5 10 15 20

Time (s)

Elapsed time to install a system
 Chapter 7. Tuning processor performance for z/VM Linux guests 117

CPU time comparison
Probably more important than the elapsed time is the CPU time used for the
installation. The total CPU cost, as well as the breakdown of the cost per virtual
machine, is shown in Figure 7-3.

Figure 7-3 CPU time used to install a system

The Breeder method uses less CPU cycles because it avoids the cost
decompressing the RPM packages. The differences between the other methods
are less obvious. For the installs that use an FTP server, the cost of the FTP
server are roughly the same. The main difference between the first two methods
must be attributed to the more efficient LCS device driver in VM TCP/IP. The GUI
method of installation uses a lot more CPU cycles because of the X-Windows
applications and the additional network traffic (the CPU portion for TCP/IP is
slightly larger).

If the installation was done on a more CPU-constrained system, the larger
demand for CPU cycles would have immediately translated into longer elapsed
time as well.

DASD I/O comparison
Another cost item to look at is DASD I/O. Because the QuickStart method copies
the RPM packages from disk instead of receiving them through the network, we
expect a larger DASD I/O rate (but far less than double because RPM packages
are compressed). This is confirmed by the graph in Figure 7-4 on page 119.

125.39

133.624

129.952

7.807

201.98

RDR + FTP + Router

RDR + FTP

QuickStart

Breeder

GUI + FTP + Router

0 50 100 150 200 250

CPU time (s)

Linux
TCP/IP
FTP

CPU time to install a system
118 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 7-4 DASD I/O to install a system

It is not clear whether the difference between the two FTP methods is significant,
but it is not unlikely that a Linux program will do more I/O for the same work when
it takes longer to complete (see 8.5.1, “Parameters for bdflush” on page 137).

The increased amount of DASD I/O for the Breeder installation is significant. The
Breeder uses an uncompressed copy of the file system to install on the target
disks (this saves a lot of CPU time). The drawback of that approach is that we do
more I/O while saving CPU cycles. This is a very obvious example of the
trade-off you make when tuning a system. When you need to install a lot of
systems in a short time, z/VM minidisk cache will do you a lot of good. It might
even be attractive to make the Breeder Linux virtual machine big enough to hold
the entire image of the target disk in buffer cache.

RDR + FTP + Router

RDR + FTP

QuickStart

Breeder

GUI + FTP + Router

0 5 10 15

I/Os (thousands)

DASD I/O to install a system

Note: Because the Breeder first copies the target disk and then applies the
personalization, it is possible to build a stock of copied target disks. The only
thing left would be personalization after the host name and IP address are
known. The stock could be replenished during the night or some other time
when sufficient resources are available to do so. It would also be possible to
have a CMS service machine combine the formatting with copying the image
(see 7.5.1, “Formatting disks” on page 115).

The CLONEDISK support added to DirMaint with APAR VM63122 is also
meant to offer some interesting options in this area. Unfortunately, the PTF for
this APAR only became available at the end of the writing of this book, so we
were not able to experiment with this new code.
 Chapter 7. Tuning processor performance for z/VM Linux guests 119

Memory usage comparison
The final cost factor for installing Linux systems is memory utilization. While we
do not have full numbers on the working set of the virtual machines during the
install process, for Linux virtual machines, it is normally good enough to multiply
the virtual machine size with the elapsed time. For the ramdisk installation
system, the virtual machine size needed is approximately 128 MB.

For the graph in Figure 7-5, we included part of the memory usage of the FTP
server and the TCP/IP stack where applicable

Figure 7-5 Memory usage for installation of a system

Conclusion
Considerable savings can be made by using an efficient installation process. This
will be an important issue if you create a lot of Linux systems or when you want to
deliver new systems very quickly.

7.6 Performance effect of virtual processors
Assigning virtual processors to a Linux virtual machine can be an effective
means of matching zSeries resources to anticipated workload. Overall
throughput can be affected by the number processors assigned to a Linux virtual
machine.

RDR + FTP + Router

RDR + FTP

QuickStart

Breeder

GUI + FTP + Router

0 10 20 30 40 50

Memory usage (MBh)

Memory usage to install a system
120 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

7.6.1 Assigning virtual processors to a Linux guest
CP shares all real processors defined to an z/VM LPAR. All virtual machines
appear to have at least one processor (referred to as the base virtual processor).
Additional virtual processors can added to a virtual machine using the CP
DEFINE CPU command. As shown in Figure 7-6, virtual processors share real
processor resources.

Figure 7-6 Virtual processors in a virtual machine

In the figure, Linux guest LNXS02 has access to two physical IFLs. However,
because it is a virtual uniprocessor, only one IFL may run at a time. Linux guest
LNXS04 is defined to have two virtual processors; each virtual processor utilizes
the physical IFLs in the LPAR. For details about how to configure virtual
processors to a z/VM guest, consult z/VM V4R3.0 Virtual Machine Operation,
SC24-6036.

7.6.2 Measuring the effect of virtual processors
Adding virtual processors to a virtual machine can improve performance for
processor-constrained workloads. To examine the effects of defining virtual
processors to a Linux guest, we consider the WebSphere Performance
Benchmark Sample workload (discussed in Appendix A, “WebSphere

z /V M

IFLIFL

virtual
C P

LN XS02

LP AR

z/V M

LP A R

IF LIF L

v irtu a l
C P

v irtu a l
C P

L N X S 0 4
 Chapter 7. Tuning processor performance for z/VM Linux guests 121

Performance Benchmark Sample workload” on page 155). Using WebSphere
Performance Benchmark Sample in a three-tier configuration, we determine the
relative cost in terms of processor resources for each component of the
workload:

� The WebSphere Application Server
� The HTTP server
� The DB2® server

In Figure 7-7, we examine the effect varying the number of virtual processors has
on CPU utilization. In this scenario, two IFLs are dedicated to the z/VM LPAR.
The Linux guests running the IBM HTTP and DB2 servers both run with a single
virtual processor (the default). The number of virtual processors allocated to the
WebSphere guest is varied from one up to four.

Figure 7-7 Measuring the effect of virtual processors on CPU utilization

From Figure 7-7, we see this workload is processor constrained. With one virtual
processor, the guest running WebSphere consumes more than 95% of a single

Note: We run each component in its own virtual machine and measure the
processor resources expended during a simulation running five concurrent
clients. The processor time spent by each virtual machine is attributed to the
WebSphere Performance Benchmark Sample component running in the
respective z/VM guest.

1 2 3 4

Number of virtual processors

0.00%

50.00%

100.00%

150.00%

200.00%

(P
er

cc
en

t o
f 1

 p
ro

ce
ss

or
)

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n

DB2
HTTP
WebSphere

Processor Utilization
122 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

real processor. When two virtual processors are allocated to the guest, processor
utilization increases to 143%. Note that increasing the number of virtual
processors beyond the number of real processors does not increase the CPU
utilization for the WebSphere guest.

Using the average response time and average CPU time utilization, we derive the
cost of adding virtual processors. Using the reported transaction rate and
measured average CPU time expended in each Linux guest, we calculate the
average cost of a WebSphere Performance Benchmark Sample transaction
(measured in milliseconds per transaction) in Figure 7-8.

Figure 7-8 Measuring the cost of adding virtual processors

In Figure 7-8, we see that when the number of virtual processors matches the
number of real processors, the average transaction cost decreases slightly. More
importantly, the average transaction rate increases significantly. Note however,
that as the number of virtual processors is increased beyond the number of real
processors (two in this case), the overall transaction rate decreases, and the cost

1 2 3 4

Number of virtual procesors

0
10
20
30
40
50
60
70

(m
s

/ t
ra

ns
ac

tio
n)

C
P

U
 c

os
t

20

25

30

35

40

(t
ra

ns
ac

tio
ns

 /
se

c)
T

ra
ns

ac
tio

n
ra

te
CPU cost Transaction

 rate

Effect of virtual processors
on CPU cost
 Chapter 7. Tuning processor performance for z/VM Linux guests 123

per transaction increases. This is due to the additional scheduling overhead
incurred by CP.

When a Linux guest runs a processor-constrained workload, we recommend:

� Defining the same number of virtual processors to the guest virtual machine
as the number of real processors available to the LPAR.

� Never defining more virtual processors to the guest virtual machine than the
number of real processors available to the LPAR.
124 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 8. Tuning DASD performance
for z/VM Linux guests

This chapter describes direct access storage device (DASD) tuning for z/VM
Linux guests. Topics include:

� Factors that influence DASD I/O

� Using VM DIAGNOSE I/O

� Comparing Diagnose and ECKD I/O

� Comparing ESCON and FICON performance

� Data caching and bdflush

8

© Copyright IBM Corp. 2003. All rights reserved. 125

8.1 Factors that influence DASD I/O
When evaluating DASD I/O performance, overall response time consists of
several components, as depicted in Figure 8-1.

Figure 8-1 Components of overall DASD response time

These components are:

� Queue time
Queue time is a result of multiple users simultaneously accessing a device. If
the device is busy servicing an I/O request, additional I/O requests wait in the
queue. The length of time an I/O request waits is the queue time. This
component is the most variable, and under heavy load, can be the most
serious. High queue times can indicate operating system contention, or a high
device service time (as I/O requests take longer to complete, requests for
service from other users can cause queuing for heavily used devices).

� Connect time
Connect time is the actual time to transfer the data on the channel, normally
less than 2 ms for a 4 K block of data.

Channel

LPAR 1

LPAR 2

I/O
Subsystem

DASD

Storage
Control

Unit

Cache
Guest 2

Guest 1

Pending
time

Connect time Disconnect time

Queue time Service time
126 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

� Pending time
Pending time is the time required to start an I/O operation. Normally, this
amounts to less than 1 ms. High pending time reflects contention on the I/O
path. This might be due to contention on the channel, on the control unit, or
on the DASD device.

� Disconnect time
Disconnect time is the time required by the control unit to access the data.
This includes rotational delays, seek delays, cache management, and
processing time inside the control unit. Disconnect time is normally less than
2 to 3 ms on cache controllers.

� Service time
Service time is the sum of pending, connect, and disconnect times.

� Response time
Response time is the sum of queue and service times.

8.1.1 General DASD I/O recommendations
In general, to optimize I/O performance, use more parallelism when possible.

Use more, smaller disks
I/O operations to a single physical disk are serialized. Therefore, when defining
the disk layout within the storage controller, smaller unit types (such as a 3390
Model 3) are preferable to the larger 3390 Model 9. The storage capacity of a
3390-9 is equivalent to three 3390-3 units. However, three simultaneous I/O
operations are possible using the 3390-3 configuration, while only one is
possible for the 3390-9.

Spread data over several units
With Logical Volume Manager (LVM) data striping and software RAID emulation
(RAID 0), a single logical disk is mapped to several physical disks. This allows
the system to initiate up to as many simultaneous I/O operations as physical
disks. However, be aware that the actual number of parallel operations is also
limited by the number of channels (CHPIDs) involved. To avoid contention, place
each stripe on its own CHPID. When striping, contention can also occur at the
control unit, or at the DASD unit. Ensure that the disks are distributed to different
control units and define the minidisks on separate DASD units.

Figure 8-2 on page 128 illustrates how LVM can increase I/O performance.

Note: Tests performed by the Boeblingen lab indicate optimal stripes are 32 K
and 64 K in size.
 Chapter 8. Tuning DASD performance for z/VM Linux guests 127

Figure 8-2 Using LVM for parallel DASD access

Using LVM, data is stripped across multiple physical DASD devices. DASD
accesses can proceed in parallel. In 8.4.2, “Measuring ESCON and FICON for
multiple DASD devices” on page 136, we measure the performance gained by
using LVM.

Reduce contention points
Contention for I/O resources can occur at several points in the I/O path:

� DASD contention
Multiple virtual machines can experience DASD contention when
simultaneously accessing data on the same DASD device.

� Control unit contention
Contention can occur when two or more DASD devices share a common
control unit.

� Channel contention
Contention can occur during simultaneously access of control unit or DASD
devices sharing the same channel.

ESS server

Linux for zSeries

Logical Volume

LVM

dasd.o

block 3block 1 block 2

DASD DASD DASD

ESS server

DASD

Linux for zSeries

dasd.o

block 3block 1 block 2
128 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Use the z/VM minidisk cache (MDC)
The minidisk cache can be effective in reducing I/O requirements. There are
different options for the MDC configuration that will impact the DASD subsystem
differently.

8.2 Using VM DIAGNOSE I/O
DIAGNOSE I/O is a high-level protocol that allows a virtual machine to access
blocks on its minidisks with less overhead than pure S/390 channel programs
with Start Subchannel (SSCH).

To use Diagnose I/O, a minidisk must be CMS formatted and reserved using the
following commands:

FORMAT 203 D
RESERVE LINUX DIAG D

The 203 minidisk is formatted with a default block size of 4 K and accessed as a
D disk. All available space is then reserved to a file called LINUX DIAG (the file
name is unimportant).

Recent SuSE kernels are built with the DIAGNOSE module
(CONFIG_DASD_DIAG). However, the option to load it automatically whenever
a DIAGNOSE device is available (CONFIG_DASD_AUTO_DIAG) is not set. Such
a disk will be picked up at IPL time by the ECKD driver, as shown in Example 8-1
for device 203.

Tip: If using DirMaint, you can request the disk to be CMS formatted by z/VM
in the background, using the DIRM AMD command:

DIRM FOR SUSE24 AMD 203 3390 1 1500 LXVOL1 BLKSIZE 4096 LABEL LXDIAG

This allocates minidisk 203 for guest SUSE24 on DASD volume LXVOL1. The
minidisk is allocated starting at cylinder 1 and sized to be 1500 cylinders. The
minidisk is labelled LXDIAG and formatted in 4 K blocks.

Remember to RESERVE the minidisk after issuing the DIRM command.
 Chapter 8. Tuning DASD performance for z/VM Linux guests 129

Example 8-1 IPL with the default ECKD discipline

cat /proc/dasd/devices
0201(ECKD) at (94: 0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0202(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 564840 blocks, 2206 MB
0203(ECKD) at (94: 8) is dasdc:active at blocksize: 4096, 14040 blocks, 54 MB

To pick-up a disk with the DIAGNOSE discipline, do one of the following:

� Recompile the kernel after having selected the two DIAGNOSE-related
options Support for DIAG access to CMS reserved Disks and Automatic
activation of DIAG module.

� Or pick the device manually:

a. Disable the device using the command:

echo "set device range=203 off" >> /proc/dasd/devices

b. Load the DIAGNOSE driver using the command:

modprobe dasd_diag_mod

c. Enable the device back:

echo "set device range=203 on" >> /proc/dasd/devices”

DASD device 203 is accessed with DIAGNOSE I/O, as seen in Example 8-2.

Example 8-2 Accessing the 203 DASD device with DIAGNOSE discipline

0201(ECKD) at (94: 0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0202(ECKD) at (94: 4) is dasdb:active at blocksize: 4096, 564840 blocks, 2206 MB
0203(DIAG) at (94: 8) is dasdc:active at blocksize: 4096, 14040 blocks, 54 MB

8.3 Comparing Diagnose and ECKD I/O
Bonnie is a well-known open source disk and file system benchmark. It is
included in most of the distributions, or can be obtained from the following
address:

http://www.textuality.com/bonnie/

Bonnie is usually not very well suited for zSeries platform, because it is single
threaded and does a lot of character I/O testing. But we just wanted an easy tool
to generate I/Os so that we could compare the behaviors of ECKD and
DIAGNOSE disciplines. We used a modified version of Bonnie that allows us to
explicitly specify which kind of testing we want to perform.
130 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.textuality.com/bonnie/

Using a SuSE SLES8 guest with 128 MB of memory, we ran Bonnie against
different disks configurations. The test scenario is as follows:

1. Write a 1500 MB file (block sequential I/O).

2. Read the 1500 MB file (block sequential I/O).

3. Bonnie creates four child processes. Each child then executes 4000 seeks to
random locations in the file. On 10% of the seeks, the block is read, modified,
and rewritten to the file.

The results for a test against an ECKD device are reported in Example 8-3.

Example 8-3 DASD performance analysis for ECKD

Screen: ESADSD2 ITSO ESAMON V3.3 02/25 12:38-12:44
1 of 3 DASD Performance Analysis - Part 1 USER lnxz02 DEVICE 2064 C0ECB

 Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
 Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
 -------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
 12:44:00 670E LX670E 3390-3 55.5 74.0 74.0 7.5 7.5 0.2 0.0 7.2
 12:43:00 670E LX670E 3390-3 97.8 26.3 26.3 37.2 37.2 0.3 0.1 36.9
 12:42:00 670E LX670E 3390-3 96.5 24.4 24.4 39.5 39.5 0.3 0.6 38.6
 12:41:00 670E LX670E 3390-3 99.2 19.6 19.6 50.7 50.7 0.3 2.9 47.5
 12:40:00 670E LX670E 3390-3 99.4 19.5 19.5 50.8 50.8 0.3 2.7 47.8
 12:39:00 670E LX670E 3390-3 55.7 11.1 11.1 50.3 50.3 0.3 2.0 48.1

Although the very high response time of 50 ms would be worrying in real life, it is
to be expected here. Bonnie is made for stressing the disk.

A more interesting result is the large percentage of response time expended in
connect time (the effective time spent transferring data on the channel). This
indicates I/Os are not delayed by waits. Rather, each I/O operation is transferring
a lot of data, which takes some time. Not much can be done to improve the
response time of the disk apart of buying newer, faster disks. We could improve
the application response time by spreading the data over several disks.

Then, we ran the same test using DIAGNOSE I/O and compared the behavior in
Example 8-4 on page 132.

Note: In this analysis (as in all others in this book), DASD devices reside on
RAMAC Virtual Array (RVA) units.
 Chapter 8. Tuning DASD performance for z/VM Linux guests 131

Example 8-4 DASD performance analysis for DIAGNOSE

Screen: ESADSD2 ITSO ESAMON V3.3 02/25 13:27-13:33
1 of 3 DASD Performance Analysis - Part 1 USER lnxz02 DEVICE 6 2064 C0ECB

 Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
 Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
 -------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
 13:33:00 6612 LX6612 3390-3 75.8 95.3 95.3 10.7 7.9 0.2 0.0 7.7
 13:32:00 6612 LX6612 3390-3 89.8 43.7 43.7 31.2 20.5 0.3 0.1 20.2
 13:31:00 6612 LX6612 3390-3 98.3 45.3 45.3 33.9 21.7 0.3 0.1 21.3
 13:30:00 6612 LX6612 3390-3 99.7 38.2 38.2 40.5 26.1 0.3 0.9 24.9
 13:29:00 6612 LX6612 3390-3 101 39.5 39.5 39.5 25.6 0.3 0.4 24.9
 13:28:00 6612 LX6612 3390-3 42.3 16.4 16.4 42.1 25.8 0.3 0.5 25.0

From this screen, we notice that:

� More I/O operations are performed, but the average duration is shorter.
The Start SubChannel (SSCH) column reports the number of I/O operations.
The average I/O duration is derived from the service time (Serv) column. This
result is beneficial for shared environment. I/O resources are held for less
time, and therefore, more available for other guests.

� DASD response times are better than with ECKD.
Although the measured DIAGNOSE response time is about 10 ms less than
ECKD response time, very little can be inferred from the result:

– The response time is better, because an average DIAGNOSE I/O
operation transfers less data than ECKD.

– More total I/O operations are performed with DIAGNOSE in order to
transfer the same amount of data.

Although the majority of service time is due to connect time, it is only part of the
total response time: Response time = queue time + service time. Queue time
measurements against the DIAGNOSE disk are shown in Example 8-5 on
page 133.
132 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 8-5 DASD performance analysis for DIAGNOSE queue time

Screen: ESADSD2 ITSO ESAMON V3.3 02/25 13:27-13:33
2 of 3 DASD Performance Analysis - Part 1 USER lnxz02 DEVICE 2064 C0ECB

 Dev Device %Dev <SSCH/sec-> <--Queueing-->
Time No. Serial Type Busy avg peak DASD Cntl THR
-------- *--- ------ ------ ---- *---- ----- ---- ---- ----
13:33:00 6612 LX6612 3390-3 75.8 95.3 95.3 2.8 0.0 0.0
13:32:00 6612 LX6612 3390-3 89.8 43.7 43.7 10.7 0.0 0.0
13:31:00 6612 LX6612 3390-3 98.3 45.3 45.3 12.1 0.0 0.0
13:30:00 6612 LX6612 3390-3 99.7 38.2 38.2 14.4 0.0 0.0
13:29:00 6612 LX6612 3390-3 101 39.5 39.5 13.9 0.0 0.0
13:28:00 6612 LX6612 3390-3 42.3 16.4 16.4 16.3 0.0 0.0

We observe some contention for the disk in the operating system:

� DIAGNOSE generates more, shorter I/Os.

� The four Bonnie child processes running in parallel compete for access to the
same disk.

From this approach, it is difficult to clearly understand which of these methods is
best suited for Linux under z/VM. Because Bonnie is stressing the disk, in both
cases, we note the device is busy more than 95% of the time in the middle of the
run. This leaves no room for other potential users to access the disk.

8.4 Comparing ESCON and FICON performance
Enterprise Systems Connection, ESCON®, and the newer Fibre Connection,
FICON™, provide I/O connectivity based on fiber optic technology. Table 8-1 on
page 134 compares some of their capabilities.
 Chapter 8. Tuning DASD performance for z/VM Linux guests 133

Table 8-1 Comparing ESCON and FICON capabilities

From a performance perspective, the higher data transfer rate and number of
concurrent I/O operations distinguish FICON from ESCON.

Using the configurations illustrated in Figure 8-2 on page 128, we measure the
throughput rate of ESCON and FICON channels. Tests are run using the
standard dasd.o device driver accessing a single DASD device and using LVM
parallel access to multiple DASD devices.

Measurements are taken using Bonnie (discussed in 8.3, “Comparing Diagnose
and ECKD I/O” on page 130) running on a z900 LPAR with an Enterprise
Storage Server (ESS) disk attachment. Tests are run against a SuSE SLES7
distribution running in 31-bit mode.

ESCON FICON (native mode)

Maximum data transfer rate 17 MB/s 100 MB/s

Date transfer mode Half duplex Full duplex

Maximum distance 3 kma

a. 43 km using repeater

20 kmb

b. 100 km using repeater

Data droop At 9 km No

CTC function Separate Integrated

Concurrent I/O operations 1 Up to 32

Note: For a complete comparison of the capabilities of ESCON and FICON,
consult IBM ^ zSeries Connectivity Handbook, SG24-5444, available
at:

http://www.ibm.com/redbooks/abstracts/sg245444.html

For details about ESCON, consult Enterprise Systems Connection (ESCON)
Implementation Guide, SG24-4662, available at:

http://www.ibm.com/redbooks/abstracts/sg244662.html

FICON is discussed in FICON Native Implementation and Reference Guide,
SG24-6266, available at:

http://www.ibm.com/redbooks/abstracts/sg246266.html
134 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.ibm.com/redbooks/abstracts/sg245444.html
http://www.ibm.com/redbooks/abstracts/sg245444.html
http://www.ibm.com/redbooks/abstracts/sg245444.html

8.4.1 Measuring ESCON and FICON for a single DASD device
In Figure 8-3, we measure the performance of ESCON and FICON when reading
and writing to a single DASD device.

Figure 8-3 ESCON and FICON performance: Single DASD device

Figure 8-3 illustrates a 35% performance improvement for write operations using
FICON over ESCON. For read operations, the performance gain is 125%. We
also note:

� The transfer rate for FICON is well below its theoretical maximum.
Although the ESCON transfer rate of 12 MB/s approaches its theoretical limit,
the FICON 26 MB/s read transfer rate is significantly less than the 100 MB/s
limit. The limitation in this case is not the channel but rather the DASD device
itself. To achieve a higher throughput, we need to access multiple DASD
devices in parallel.

0

5

10

15

20

25

30

M
B

/s
ec ESCON

FICON

Single DASD

ReadWrite

Note: To maximize FICON performance, use LVM for data stripping to
increase parallel DASD access. The performance improvements are
shown in 8.4.2, “Measuring ESCON and FICON for multiple DASD
devices” on page 136.
 Chapter 8. Tuning DASD performance for z/VM Linux guests 135

� The FICON transfer rate differs substantially between reads and writes.
To ensure data integrity in the event of a power failure, the ESS server uses
nonvolatile storage. This difference is accounted for by the longer write
access time to that storage.

8.4.2 Measuring ESCON and FICON for multiple DASD devices
LVM striping enables us to increase the number of parallel I/O operations to
DASD devices. In Figure 8-2 on page 128, we examine the effect of parallel
access on data transfer rate. In this scenario, Bonnie read scenarios are run
using multiple DASD devices combined in a single logical volume. The number of
DASD devices is varied from one to eight. Results are compared using eight
ESCON and four FICON channels.

Figure 8-4 ESCON and FICON performance: Multiple DASD devices

Both ESCON and FICON benefit from the increased parallelism provide by LVM.
In general, FICON provides twice the data transfer rate (using half the number
channels) as ESCON.

1 2 4 6 8

Number of disks

0

20

40

60

80

100

120

140

M
B

/s
ec 8 ESCON

4 FICON

Multiple DASD
136 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

8.5 Data caching and bdflush
Having its roots in discrete servers with relatively slow I/O and inexpensive
memory, Linux attempts to use memory to avoid disk I/O (see 3.4, “Illustrating
Linux aggressive caching” on page 30). One way Linux attempts to avoid I/O is to
initially buffer all application output in memory. It then uses an asynchronous
process bdflush (or kupdated thread in other releases) to write that data out to
disk. This allows for more efficient I/O, helps to keep temporary files away from
the disk completely, and allows the operating system to pace I/O in a way that
does not impact interactive work on the system.

8.5.1 Parameters for bdflush
To demonstrate the effect of “lazy write,” we run dt to write a file slowly (with 64
KB/s) and monitor the disk I/O with vmstat.

The results of this experiment are shown in the graph in Figure 8-5 on page 138.

Note: In this section, we look at the behavior of bdflush. By adjusting its
instrumentation, we examine the effect on data caching. However, we can
draw no conclusions about what the optimal bdflush parameter settings are for
Linux on zSeries.

Note: The Data Test (dt) program is a utility to verify operation of peripheral
devices. Its syntax and operation is similar to the dd command. Details can be
found at:

http://www.bit-net.com/~rmiller/dt.html
 Chapter 8. Tuning DASD performance for z/VM Linux guests 137

http://www.bit-net.com/~rmiller/dt.html

Figure 8-5 Effect of lazy write on slowly writing a file

During the first 35 seconds of the test, there is little to see, except for the small
peaks of 64 KB each. Because no data is being written to disk, we must conclude
that Linux memory is filling with blocks of data that is to be written to disk (the
“dirty data”). After 35 seconds, we see a small amount of data written to disk
every five seconds.

The explanation for this strange behavior lies in the default parameters for
bdflush. These parameters are controlled through /proc/sys/vm/bdflush. You cat
the entry to see the current values:

cat /proc/sys/vm/bdflush
30 64 64 256 500 3000 60 0 0

The parameters can be changed by writing a line with the appropriate values into
the bdflush entry.

0 10 20 30 40 50 60 70

Time (s)

0

500

1000

1500

2000

2500
B

lo
ck

s

File written

Dirty data

Blocks out

Effect of lazy write (bdflush)

Note: Some people suggest the meaning of these parameters can be found in
the Documentation directory of your kernel source. When we tried to make
sense of the values and the effect of changes, we found the vm.txt file is
apparently out-of-date. The real meaning (and defaults) come out of fs/buffer.c
instead. Be aware that next kernel releases will change this again.
138 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Table 8-2 Parameters for bdflush (with Linux 2.4.7)

With the description and default values for the parameters, we can understand
the graph in Figure 8-5 on page 138:

interval Specifies bdflush is to wake up every five seconds.

age_buffer Specifies that a buffer is to be written to disk only when it is older
than 30 seconds.

The first data blocks are written to disk only after 35 seconds. When bdflush
wakes up five seconds later, it finds another 320 KB of dirty buffers old enough to
write to disk. During the entire test, some 2 MB worth of data is waiting to be
written to disk.

For the next experiment, we change age_buffer to 10 seconds. The graph in
Figure 8-6 on page 140 confirms what we expect:

� Data is first written to disk after 15 seconds.

� Every five seconds afterward, another 320 KB is written to disk.

Field Default Description

nfract 30 Percentage of buffer dirty required to activate bdflush

ndirty 64 Maximum number of buffers to write out per wake-cycle

nrefill 64 Number of clean buffers to obtain each time refill is called

unused 256

interval 5 * HZ Delay (in jiffies) between kupdate flushes

age_buffer 30 * HZ Time for normal buffer to age before flushing

nfract_sync 60 Percentage of buffer cache dirty required to activate bdflush
synchronously
 Chapter 8. Tuning DASD performance for z/VM Linux guests 139

Figure 8-6 Effect of age_buffer=10 on bdflush

It might appear to be a good thing to write the data to disk sooner, but we also
find more data is written to disk. We suspect this is due to the same data being
written more than once during the test.

Another available tuning method is to increase the interval between flush cycles.
When we increase the interval from 5 to 10 seconds, bdflush indeed wakes up
every 10 seconds and writes twice the amount of data to disk during each cycle.

Unlike the VM minidisk cache, which uses a write-through cache (as discussed
on page 52), Linux utilizes a store-in cache; written data is retained in cache.
This is a logical choice, because the data is already buffered in memory before
writing it. Much of the cost of the cache is already incurred by the time the data
goes to disk.

The effect of buffering only appears when observing the system for a longer
period of time. We look at cache growth in Figure 8-7 on page 141.

0 10 20 30 40 50 60 70

Time (s)

0

500

1000

1500

2000

2500
B

lo
ck

s
File written Dirty data Blocks out

Effect of age_buffer=10 on bdflush
140 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 8-7 Growth of buffer cache while writing a file

The graph shows the cache growing from an initial 5 MB to 20 MB (where it
remains). When that point is reached, the oldest blocks are dropped from cache,
and memory pages are reused for new data.

The test used here writes a file sequentially, and then reads the file (again
sequentially from beginning to end). Due to the both the size of the file and the
manner in which the cache is filled when writing the file, the cache offers no
benefit when reading the file:

� When reading the file from the beginning, only the last portion of the file
remains in the buffer cache from the write phase.

� The portions of the file remaining in the buffer cache from the write phase are
evicted to make room for newly read data before the read phase can reuse
them.

One side effect of increasing age_buffer is that the maximum amount of dirty
data held in memory changes as well: When bdflush waits longer before writing
data, more dirty data accumulates in memory. This relationship holds only when
data is written at a constant rate. To unconditionally limit the amount of dirty data

0 40

Time (s)

0

500

1000

1500

2000

2500
B

lo
ck

s

0

5

10

15

20

25

C
ac

he
 s

iz
e

(M
B

)

File written Dirty data Blocks out Cache

Growth of buffer cache

Note: If the file was small enough to fit in buffer cache, the data could be read
back without accessing the disk.
 Chapter 8. Tuning DASD performance for z/VM Linux guests 141

in memory, use the nfract parameter (the default is to allow 30% of the buffer to
be dirty).

Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299
states that the channel programs Linux uses to write out data through bdflush are
not always very effective with Linux on z/VM:

� The dirty pages are left in memory for some time (default 30 seconds)
before bdflush starts to write them to disk.
This is attractive for temporary files that are discarded before bdflush picks
the data up. It completely avoids I/O. However, with Linux on z/VM, it is
undesirable to wake up a virtual machine every 30 seconds to write buffer
cache data:

– If there is sufficient contention, z/VM may have already paged these dirty
pages.

– In this was the case, z/VM would first have to page the data back in order
for Linux to perform I/O.

� The channel programs used by bdflush can grow very long, such as 500
KB per I/O.
While this is efficient for reducing the number of I/O operations, with Linux on
z/VM it can be counterproductive:

– To start I/O, CP must first lock all Linux memory pages involved in the
operation. This can cause contention.

– Memory pages involved in the I/O operation might have to brought back
from paging storage if they were updated long time ago.
142 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Chapter 9. Measuring the cost of OSA,
Linux, and z/VM networking

In this chapter, we look at the relative cost of various networking and routing
options when running Linux as a z/VM guest. Topics include:

� Comparing the CPU time cost of routing

� The effect of bandwidth on routing costs

� QDIO optimizations for z/VM

� Memory costs associated with QDIO

� Comparing CPU cost by network type

9

© Copyright IBM Corp. 2003. All rights reserved. 143

9.1 Comparing the CPU time cost of routing
To determine the relative cost of various routing options, we use the WebSphere
Performance Benchmark Sample workload in the network configurations
depicted in Figure 9-1. Details about WebSphere Performance Benchmark
Sample can be found in Appendix A, “WebSphere Performance Benchmark
Sample workload” on page 155.

Figure 9-1 Three configurations to measure the cost of routing

z/VM

HTTP
Websphere
Application

Server
DB2

172.22.10.0

192.168.2.0

OSAOSA

OSA Direct

z/VM

HTTP
Websphere
Application

Server
DB2

Linux
Router

172.22.10.0

192.168.2.0

OSAOSA

Linux Router

z/VM

HTTP
Websphere
Application

Server
DB2z/VM

Router

172.22.10.0

192.168.2.0

OSAOSA

z/VM Router
144 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

We compare the CPU cost for:

� Routing using an Open Systems Adapter (OSA) direct connection

� Routing using a z/VM Linux guest

� Routing using the z/VM TCP/IP stack

In each configuration, we use WebSphere Performance Benchmark Sample in a
three-tier configuration. Components are connected using a HiperSockets
network (172.22.10.0). Clients connect through an OSA-Express interface
connected to a private external network (192.168.2.0).

We establish a common metric to be used when comparing the three routing
configurations: the average number of WebSphere Performance Benchmark
Sample transactions completed in one CPU second. To calculate this value, we
initiate a workload using five simulated clients on the 192.168.2.0 network. We
note the reported average transaction rate seen by the clients, as well as the
CPU time used by the router guest and the HTTP client. Example 9-1 shows the
CPU time consumed by the HTTP server for the OSA direct routing configuration.

Example 9-1 CPU time used by the HTTP server (OSA direct routing)

Screen: ESAUSR2 ITSO ESAMON V3.3 02/19 12:51-12:56
 1 of 3 User Resource Utilization USER lnxs02 2064
C0ECB

 <---CPU time--> <--------Main Storage (pages)--------->
 UserID <(seconds)> T:V <Resident> Lock <-----WSS----->
 Time /Class Total Virt Rat Total Activ -ed Total Actv Avg Resrvd
 -------- -------- ----- ----- --- ----- ----- ---- ----- ---- ---- ------
 12:56:00 LNXS02 19.63 11.42 1.7 9807 9807 2482 6981 6981 6981 0
 12:55:00 LNXS02 18.21 9.80 1.9 9807 9807 2574 6981 6981 6981 0
 12:54:00 LNXS02 18.07 9.70 1.9 9804 9804 3047 6981 6981 6981 0
 12:53:00 LNXS02 18.10 9.62 1.9 9804 9804 2974 6981 6981 6981 0
 12:52:00 LNXS02 18.00 9.62 1.9 9804 9804 2401 6628 6628 6628 0

Average CPU time used over the interval is 18.4 CPU-seconds/minute. The
reported transaction rate over the period is 35.4 transactions/second.

Note: To estimate routing cost, we use the average CPU time (in
milliseconds) required for a transaction. In this case, we define a transaction to
be an HTTP request and response from the WebSphere Performance
Benchmark Sample server. Using the reported average transaction and the
CPU cost for each WebSphere Performance Benchmark Sample component,
we calculate routing cost from the average CPU time measured for a one
minute interval and reported transaction rate.
 Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking 145

Results for each routing configurations are summarized in Table 9-1.

Table 9-1 Summary of CPU cost for routing (OSA direct, Linux, z/VM)

The results reveal:

� The Linux router offers the highest transaction rate.
The reported transaction rate for the Linux router is approximately 50% higher
than the z/VM router.

� Cost for an OSA direct connection is least expensive at 8.7
CPU-ms/transaction.
This result is expected. Although the CPU time spent by the HTTP server is
greater, no additional CPU time is consumed for a router virtual machine.

� On average, the cost of a Linux router is approximately the same as the
cost of an HTTP server when using a z/VM router.
Although there are may be good reasons for using a Linux router (such as
firewall capability and network packet filtering), there is a measurable cost.

� The cost of a z/VM router is about 15% less than the cost of a Linux
router.
The figures indicate z/VM might have some QDIO network optimization not
available to Linux guests. We examine this in 9.3, “QDIO optimizations for
z/VM” on page 150.

9.2 The effect of bandwidth on routing costs
Using the Iperf tool, we examine bandwidth effects on the routing.

Router Transaction
ratea

a. Transactions/second.

Router
CPU timeb

b. CPU-second/minute.

HTTP
CPU timeb

Total
CPU timeb

Costc

c. CPU-ms/transaction.

OSA direct 35.4 d

d. The OSA direct configuration incurs no CPU cost for a guest router.

18.4 18.4 8.7

Linux router 39.2 12.0 13.3 25.3 10.8

z/VM router 25.9 4.0 10.2 14.2 9.2

Note: Iperf is a utility for measuring TCP and UDP bandwidth performance.
Details can be found at:

http://dast.nlanr.net/Projects/Iperf/
146 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://dast.nlanr.net/Projects/Iperf/

Although Iperf supports both TCP and UDP traffic, be aware that the Iperf
measurements made in this redbook utilize UDP datagrams. Using the Linux
Traffic Control program, tc, we were unable to limit TCP bandwidth only up to 5
Mbit/s. When attempting to limit TCP bandwidth to 10 Mbit/s, Iperf push network
load to 94 Mbit/s. However using UDP, Iperf is able to limit network traffic over
the full range of bandwidths.

We compare routing using a Linux guest to a z/VM, as shown in Figure 9-2.

Figure 9-2 Measuring the bandwidth effect on routing cost using Iperf

In the configurations, the Iperf server runs on a Linux guest connected to the
router over an internal network (172.22.10.0). The Iperf client runs on a private
Ethernet network (192.168.2.0) and access the router through an OSA-Express
interface. Each router runs in a 64 MB virtual machine with one defined virtual
CPU.

To calculate the effect of bandwidth on routing costs, we use Iperf to drive a
network load and measure the CPU time consumed by the router. We use the
average data transfer rate reported by Iperf and the measured CPU consumption
to derive cost in terms of MB per CPU-second.

Using Iperf, network loads can be varied by both consumed network bandwidth
and by packet size. To study the effects, we run scenarios that:

� Vary consumed network bandwidth
Scenarios are run with network bandwidth limited to 1 Mbit/s, 25 Mbit/s, 50
Mbit/s, 75 Mbit/s, and 100 Mbit/s using a 600 byte UDP packet size.

� Vary UDP packet size
The UDP packet size is increased to 1470 bytes, and the scenarios are run
again at the selected network bandwidths.

z/VM

Linux
Router

Iperf
Server

172.22.10.0

192.168.2.0

OSAOSA z/VM

z/VM
Router

Iperf
Server

172.22.10.0

192.168.2.0

OSAOSA
 Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking 147

� Vary network type
We compare the CPU cost for three types of zSeries networks:

– HiperSockets
– Inter-User Communications Vehicle (IUCV)
– z/VM Guest LAN

Router CPU costs are calculated by dividing the total CPU-ms used by the total
data transferred. Results are reported both for virtual CPU time and for CPU time
spent in CP.

Figure 9-3 on page 149 compares the cost of a Linux router to a z/VM router for
varying bandwidths operating on 600 byte UDP packets. CPU costs are broken
down for virtual and CP time.

Note: Virtual CPU time is the actual amount of processing time expended by
the z/VM guest. CP time is the amount processor time used by CP acting on
behalf of the z/VM guest.
148 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Figure 9-3 Comparing bandwidth effect on z/VM and Linux routing

1 25 50 75 100

(Mbit/s)

Bandwidth

0
10
20
30
40
50
60
70
80
90

100

(m
s/

M
B

)

C
P

U
 c

os
t

z/VM router
CP cost
z/VM router
virtual cost
Linux router
CP cost
Linux router
virtual cost

Router CPU cost
1470 byte UDP

1 25 50 75 100

(Mbit/s)

Bandwidth

0

40

80

120

160

200
(m

s/
M

B
)

C
P

U
 c

os
t

z/VM router
CP cost
z/VM router
virtual cost
Linux router
CP cost
Linux router
virtual cost

Router CPU cost
600 byte UDP
 Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking 149

Figure 9-3 on page 149 illustrates that the CPU cost of a z/VM router is
significantly less than a Linux guest router, independent of both bandwidth and
UDP packet size. A substantial portion of the additional cost of the Linux router is
the CPU time spent in CP processing.

9.3 QDIO optimizations for z/VM
The data presented in Figure 9-3 on page 149 is in accord with the conclusion
that a z/VM router is more cost effective than a Linux guest router (at least when
using OSA-Express interface). We note the routing costs decrease as bandwidth
increases, independent of data packet size.

Interestingly, the Linux router spends more than half of its processing time in CP.
This can be accounted for by z/VM optimization employed when using QDIO:

� Use of DIAGNOSE 98
z/VM uses the VM DIAGNOSE 98 system service to manage storage for
Queued Direct Input Output (QDIO) buffers. This service allows a virtual
machine to lock and unlock memory pages. Therefore, the z/VM TCP/IP
virtual machine avoids VM hypervisor overhead (and therefore CP processing
time) by communicating directly with the QDIO interface.

� Packing datagrams in the QDIO buffer
z/VM has prior knowledge of pending packets destined for QDIO interfaces.
The z/VM TCP/IP utilizes this to pack many datagrams into a single network
payload (and thereby save CPU cycles when delivering the packed payload to
the interface).

These optimizations are available to z/VM on any QDIO interface, OSA or
HiperSockets.

Traffic packaging on a QDIO interface can be observed. In Example 9-2 on
page 151, we use the ifconfig command to examine the number of packets
received at the Iperf server’s HiperSockets interface.

Note: Take note of the change in y-axis scale between the two charts.

Note: Traffic packing can occur with packets destined for all IP
destinations when using an OSA interface. However, only traffic destined
to a single IP address can be packaged when using HiperSockets.
150 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example 9-2 Counting packets received at the Iperf server

hsi1 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 inet addr:172.22.10.10 Mask:255.255.255.0
 inet6 addr: fe80::200:ff:fe00:0/10 Scope:Link
 UP RUNNING NOARP MULTICAST MTU:16384 Metric:1
 RX packets:3296073 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1799129 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:1267423148 (1208.7 Mb) TX bytes:151174713 (144.1 Mb)
 Interrupt:3

The RX packets value reports the number of received packets. In Example 9-3,
we use the CP QUERY VIRTUAL OSA command to count the number of packets
received by the router from the OSA-Express interface.

Example 9-3 Counting packets received on the OSA-Express interface

OSA F002 ON OSA 7345 SUBCHANNEL = 0005
 F002 QDIO ACTIVE
 F002 INP + 01 IOCNT = 03160430 ADP = 106 PROG = 000 UNAVAIL = 022
 F002 OUT + 01 IOCNT = 01799105 ADP = 000 PROG = 128 UNAVAIL = 000
 F002 OUT + 02 IOCNT = 00000000 ADP = 000 PROG = 000 UNAVAIL = 128
 F002 OUT + 03 IOCNT = 00000000 ADP = 000 PROG = 000 UNAVAIL = 128
 F002 OUT - 04 IOCNT = 00000023 ADP = 001 PROG = 000 UNAVAIL = 127

The INP IOCNT value reports the number of received packets.

The QDIO packing effect can be measured by calculating the ratio of packets
received on the OSA-Express interface to the number of packets received on the
Iperf server HiperSockets interface. In Figure 9-4 on page 152, we show how the
packing factor varies by bandwidth using a 600 byte UDP payload.

Tip: z/VM help for the CP QUERY VIRTUAL OSA command says:

IOCNT = nnnnnnnn
specifies the number of data transfers that have completed since the
QDIO data queue was last activated by the program. CP increments the
IOCNT each time a QDIO data buffer changes from an adapter-owned
state to a program-owned state.
 Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking 151

Figure 9-4 Measuring the QDIO packet packing effect

We see the Linux router performs no packing. Its packing factor remains one for
all bandwidths. Using a z/VM router, the QDIO packing increases to almost four.

9.4 Memory costs associated with QDIO
Be aware, by default, the Linux QDIO device driver reserves approximately 8 MB
of memory for each QDIO device, memory that needs to be locked in real
memory below the 2 GB address line. This cost should taken into account when
running many Linux guest (particularly if each guest uses multiple QDIO
devices). For example, the requirement for 50 Linux guests sharing an OSA
adapter translates to 400 MB of z/VM memory.

It is possible to change the QDIO device driver memory size. For details, see
Linux for zSeries and S/390 Device Drivers and Installation Commands,
LNUX-1303. Lowering the memory requirement will lower the MTU for the
device.

1 25 50 75 100

(Mbit/s)

Bandwidth

0

1

2

3

4

P
ac

ki
ng

 fa
ct

or

Linux router
z/VM router

QDIO packing
600 byte payload
152 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

9.5 Comparing CPU cost by network type
In Figure 9-5, we calculate cost of routing for various network types:

� HiperSockets
� IUCV
� z/VM Guest LAN

The comparison is based on Iperf measurements performed on the configuration
illustrated in Figure 9-2 on page 147. In this case, a Linux router is used, and the
172.22.10.0 network is varied according to the type under consideration.

Figure 9-5 CPU cost comparison by network type

The graph illustrates that while the CPU cost of IUCV is slightly higher than
HiperSockets and z/VM Guest LAN at low bandwidth, IUCV becomes less
expensive at higher bandwidths. We also note the CPU cost of z/VM Guest LAN
is essentially equal to the cost of HiperSockets.

Hint: To conserve memory below 2 GB, consider using a single router (Linux
or z/VM) connected to the OSA adapter. Use virtual channel-to-channel (CTC)
or IUCV connections from the router to the Linux guests. These devices have
much lower memory requirements.

1 2 3 4 5

(Mbit/s)
Bandwidth

0

40

80

120

160

200

240

(m
s/

M
B

)
C

P
U

 c
os

t HiperSockets
IUCV
VM Guest LAN

Comparison by network type
600 byte UDP

Linux router
 Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking 153

154 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Appendix A. WebSphere Performance
Benchmark Sample
workload

This appendix describes the WebSphere Performance Benchmark Sample
(WPBS) workload.

A

© Copyright IBM Corp. 2003. All rights reserved. 155

WebSphere Performance Benchmark Sample
WebSphere Performance Benchmark Sample (WPBS), commonly referred to as
the Trade 2 application, is a sample J2EE benchmark application for IBM
WebSphere Application Server. The application simulates a stock trading
application. WebSphere Performance Benchmark Sample is available to
download for free at:

http://www-3.ibm.com/software/webservers/appserv/wpbs_download.html

WebSphere Performance Benchmark Sample provides a suite of workloads for
characterizing performance of the IBM WebSphere Application Server. In this
redbook, we use the WebSphere Performance Benchmark Sample to generate
workloads that are analyzed in terms of their impact on system performance.
Figure A-1 illustrates a logical view of the WebSphere Performance Benchmark
Sample application.

Figure A-1 Components of an IBM WebSphere Application Server deployment

The three main WebSphere Performance Benchmark Sample components are:

� The IBM HTTP server
The HTTP server accepts client requests and delivers static content (HTML
pages, images, and stylesheets). Dynamic requests are forwarded to the
WebSphere Application Server through a server plugin.

� The IBM WebSphere Application Server
The WebSphere Application Server creates dynamic content using
JavaServer Pages (JSP) and Java Servlets. Pages are generated from data
extracted from a DB2 database.

� The DB2 database
The DB2 database contains relational tables regarding simulated customer
accounts and stock transactions.

IBM HTTP
Server

plugin

DB2
WebSphere
Application

Server

DB2
client

Web
client
156 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www-3.ibm.com/software/webservers/appserv/wpbs_download.html

WebSphere Performance Benchmark Sample
deployment options

Several options are available when deploying the WebSphere Performance
Benchmark Sample application on Linux for zSeries:

� All components can run in a single Linux guest.
We refer to this as a single-tier deployment.

� Each component can run in a dedicated Linux guest.
We refer to this as a three-tier deployment.

These two deployment options are depicted in Figure A-2.

Figure A-2 WPBS deployment: Three-tier versus single-tier

In this book, the WebSphere Performance Benchmark Sample is used as a
workload generator for Linux running as a z/VM guest. In this case, we primarily
use the three-tier deployment option. This enables us to adjust the virtual
machine size of each Linux guest more accurately based on the task that guest
performs. In addition, when measuring utilization, the three-tier deployment
option allows us to attribute specific resources usage to a specific task.

IBM HTTP
Server

LNXS02

Websphere
Application

Server

LNXS03

DB2

LNXS04

172.22.10.0

z/VM

OSAOSA

z/VM

OSAOSA

IBM HTTP
Server

LNXS02

Websphere
Application

Server
DB2

Note: For a complete description of deployment options for WebSphere
Application Server, consult WebSphere Application Server V4 for Linux,
Implementation and Deployment Guide, REDP0405, available at:

http://www.ibm.com/redbooks/abstracts/redp0405.html
 Appendix A. WebSphere Performance Benchmark Sample workload 157

http://www.ibm.com/redbooks/abstracts/redp0405.html

158 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Appendix B. Mstone workload generator

This appendix describes the Mstone workload generator. Topics discussed
include:

� Mstone overview

� Operation of the Mstone workload

� Configuring the Mstone client

� Configuring the example.com domain

� Populating the LDAP database

B

© Copyright IBM Corp. 2003. All rights reserved. 159

Mstone overview
Mstone is a performance measurement tool available from the Mozilla project:

http://www.mozilla.org/projects/mstone

Originally known as Mailstone, Mstone can be used for capacity planning and
testing network mail servers. The Mailstone user guide can be found at:

http://docs.sun.com/source/816-6036-10/index.html

Using Mstone, workloads can be generated on mail servers from multiple client
machines. Test scenarios that employ multiple mail protocols and multiple
simulated mail clients can be used to observe server response under heavy load.
Although originally intended to test mail server performance, Mstone has
features that make it suitable for overall system performance analysis. The
Mstone configuration used in this book is shown in Figure B-1.

Figure B-1 Mstone workload configuration

example.com

LNXR10

LNXR01 LNXR02 LNXR03 LNXR04 LNXR06LNXR05 LNXR07

DNS
LDAP

Sendmail

Router

z/VM

OSAOSA

192.168.2.0Mstone clients

LNXR09

RedHat1 RedHat2
160 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.mozilla.org/projects/mstone
http://www.mozilla.org/projects/mstone
http://docs.sun.com/source/816-6036-10/index.html

The configuration consists of:

� Mstone clients
Mstone clients (hosts RedHat1 and RedHat2) are used to generate mail
messages destined to users in the example.com domain. The RedHat1 and
RedHat2 Linux hosts reside on a private network routed to the example.com
domain through an OSA-Express interface.

� Linux router
The example.com network is implemented as a HiperSockets network.
Routing to and from the 192.168.20 private network is managed by a z/VM
Linux guest (host LNXR09) configured with IP forwarding enabled.

� Combined DNS and LDAP server
Host name resolution on the example.com network is managed by a DNS
server running on the LNXR10 z/VM Linux guest. The OpenLDAP server
resolves where specific user accounts reside in the example.com domain.

� Sendmail servers
Messages are routed to the intended recipients in the example.com domain
by the sendmail server running on hosts LNXR01 through LNXR07.

Each sendmail host in the example.com domain services 1000 users. The
distribution of users across the sendmail hosts is shown in Table B-1.

Table B-1 Distribution of users to sendmail hosts

Sendmail host name User distribution

LNXR01 itso-user0 through itso-user999

LNXR02 itso-user1000 through itso-user1999

LNXR03 itso-user2000 through itso-user2999

LNXR04 itso-user3000 through itso-user3999

LNXR05 itso-user4000 through itso-user4999

LNXR06 itso-user5000 through itso-user5999

LNXR07 itso-user6000 through itso-user6999
 Appendix B. Mstone workload generator 161

Operation of the Mstone workload
The flow of the Mstone workload is illustrated in Figure B-2 on page 162.

Figure B-2 Mstone workload flow

The operation proceeds as follows:

1. Mstone creates a message to a randomly chosen example.com
recipient.
The Mstone script randomly selects an intended recipient in the range
itso-user0 through itso-user6999. The message is then sent to the local
sendmail server (on host RedHat1 in the example) for delivery. Sendmail
configuration for the Mstone clients is discussed in “Configuring the Mstone
client” on page 164.

2. The local sendmail server queries the example.com DNS server for the
MX records required to deliver the message.
The Mstone client machines are configured to use the example.com DNS
server (LNXR10) for host name resolution. When queried for MX records,
DNS responds with the list of MX records that specify the mail exchange
servers for the example.com domain (LNX01 through LNXR07).

The first record in the list is selected by the DNS server in a round-robin
fashion. This ensures messages are routed to a specific example.com
sendmail server in a relatively equal manner.

LDAP

Mstone

DNS

mailbox mailbox

sendmail
(LNXR02)

sendmail
(LNXR01)

1

2
3

5

4

6

sendmail
(RedHat1)
162 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

3. The local sendmail server forwards the message to the first mail
exchange server identified by DNS.
The local sendmail server selects the specific mail exchanger server by
proceeding through the MX record list in sequential order. The message is
delivered to the first available sendmail server.

Sendmail configuration for the example.com domain is discussed in
“Configuring the example.com domain” on page 164.

4. The selected example.com mail exchange server queries LDAP to
determine where the recipient’s mailbox resides.
Upon receipt of an incoming message, the specific example.com mail
exchange server first queries LDAP with the intended recipient’s e-mail
address. LDAP responds with the host name on which that recipient’s mailbox
can be found. If the recipient’s mailbox is defined locally, sendmail delivers
the message to that user and processing is complete.

5. If the recipient’s mailbox is defined on another host, sendmail forwards
the message to that host’s mail exchange server.
In the event the recipient’s mailbox is defined on another host, sendmail
forwards the message to mail exchange server on that host.

LDAP routing in sendmail
As shown is Figure B-2 on page 162, the sendmail servers are configured to use
LDAP when routing messages to real users. The choice of LDAP as a sendmail
router has several advantages:

� Sendmail recipients can be defined without creating user IDs on the Linux
hosts.

� The LDAP server adds an additional workload that can be studied and tuned
in performance analysis.

Configuring sendmail to use LDAP routing is covered in “Configuring the
example.com domain” on page 164. Additional information about LDAP routing
for sendmail can be found at:

http://www.sendmail.org/m4/ldap_routing.html

Note: If the first mail exchange server in the list is unavailable (for
example, that server is down), the local sendmail server attempts to deliver
to the next mail exchange server in the list.
 Appendix B. Mstone workload generator 163

http://www.sendmail.org/m4/ldap_routing.html
http://www.sendmail.org/m4/ldap_routing.html

Configuring the Mstone client
To configure the Mstone client:

1. Install and start the sendmail server.
For Red Hat Linux installations, the default sendmail configuration is
sufficient.

2. Point the DNS host to the example.com DNS server.
Configure the resolver to point to the DNS server for the example.com
domain. Add the following to the /etc/resolv.conf file:

search example.com
nameserver 172.22.10.22

Configuring the example.com domain
To configure the example.com domain for Mstone workloads, the sendmail,
LDAP, and DNS server must be configured.

To enable sendmail for LDAP routing, we change the sendmail m4 configuration
file (/etc/mail.sendmail.mc), as shown in Example B-1 on page 165.
164 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example: B-1 The sendmail configuration file: /etc/mail/sendmail.mc

divert(-1)
include(`/usr/share/sendmail-cf/m4/cf.m4')
VERSIONID(`linux setup for Red Hat Linux')dnl
OSTYPE(`linux')
define(`confDEF_USER_ID',``8:12'')dnl
define(`confDOMAIN_NAME', `lnxr01.example.com')dnl
undefine(`UUCP_RELAY')dnl
undefine(`BITNET_RELAY')dnl
define(`confAUTO_REBUILD')dnl
define(`confTO_CONNECT', `1m')dnl
define(`confTRY_NULL_MX_LIST',true)dnl
define(`confDONT_PROBE_INTERFACES',true)dnl
define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl
define(`ALIAS_FILE',
`ldap: -1 -v rfc822MailMember -k "(&(objectClass=nisMailAlias)(uid=%0))"') 1
define(`UUCP_MAILER_MAX', `2000000')dnl
define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl
define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn,restrictqrun')dnl
define(`confLDAP_DEFAULT_SPEC',`-h 172.22.10.22 -b "o=My Organization Name,c=US"') 2
FEATURE(`no_default_msa',`dnl')dnl
FEATURE(`smrsh',`/usr/sbin/smrsh')dnl
FEATURE(`mailertable',`hash -o /etc/mail/mailertable.db')dnl
FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable.db')dnl
FEATURE(redirect)dnl
FEATURE(always_add_domain)dnl
FEATURE(use_cw_file)dnl
FEATURE(use_ct_file)dnl
FEATURE(local_procmail,`',`procmail -t -Y -a $h -d $u')dnl
FEATURE(`access_db',`hash -o /etc/mail/access.db')dnl
FEATURE(`blacklist_recipients')dnl
EXPOSED_USER(`root')dnl
DAEMON_OPTIONS(`Port=smtp,Addr=0.0.0.0, Name=MTA')
FEATURE(`accept_unresolvable_domains')dnl
FEATURE(`relay_entire_domain')dnl
LDAPROUTE_DOMAIN(`example.com') 3
FEATURE(`ldap_routing',
ldap -1 -v mailHost -k `"(&(objectClass=inetLocalMailRecipient) (mail=%0))"',
ldap -1 -v mailRoutingAddress -k `"(&(objectClass=inetorgperson) (mail=%0))"',
passthru)dnl 4
MAILER(smtp)dnl
MAILER(procmail)dnl

Configuration options are explained as follows:

1. The ALIAS_FILE directive instructs sendmail to convert a recipient name to a
real user name using an LDAP query.
 Appendix B. Mstone workload generator 165

2. Identifies the LDAP server to use for mail routing (172.22.10.22) and provides
the suffix attribute ("o=My Organization Name,c=US") to append to LDAP
queries.

3. Specifies that messages to users in the example.com domain are to be
routed using LDAP.

4. Enables LDAP routing.

To generate a new sendmail configuration file, use the command:

m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

Then restart the sendmail server.

The OpenLDAP server configuration file is shown in Example B-2.

Example: B-2 The OpenLDAP configuration file: /etc/openldap/slapd.conf

include/etc/openldap/schema/core.schema
include/etc/openldap/schema/cosine.schema
include/etc/openldap/schema/inetorgperson.schema
include/etc/openldap/schema/nis.schema
include/etc/openldap/schema/redhat/autofs.schema
include/etc/openldap/schema/redhat/kerberosobject.schema
include/etc/openldap/schema/misc.schema

###
ldbm database definitions
###

loglevel0
databaseldbm
cachesize7500
dbcachesize600000
suffix "o=My Organization Name,c=US"
rootdn "cn=Manager,o=My Organization Name,c=US"
rootpw secret

directory/var/lib/ldap
Indices to maintain
indexobjectClass,uid,uidNumber,gidNumber,memberUideq
indexcn,mail,surname,givennameeq,subinitial

Example B-3 on page 167 shows a partial listing of the /etc/named.conf DNS
configuration file. The DNS server is defined to be authoritative for the example
zone as indicated by the type master option.
166 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example: B-3 DNS configuration for zone example.com: /etc/named.conf

.

.
zone "example.com" {
 type master;
 notify yes;
 file "db.com.example";
};
.
.

The /var/named/db.example.conf file shown in Example B-4 defines the
example.com zone.

Example: B-4 The forward DNS zone configuration:/var/named/db.example.com

$TTL 86400
@ IN SOA lnxr10.example.com. root.example.com. (
 2003011816 86400 7200 604800 86400)
 IN NS lnxr10

IN MX 10 lnxr07
 IN MX 10 lnxr06
 IN MX 10 lnxr05
 IN MX 10 lnxr04
 IN MX 10 lnxr03
 IN MX 10 lnxr02
 IN MX 10 lnxr01

lnxr01 IN A 172.22.10.13
lnxr02 IN A 172.22.10.14
lnxr03 IN A 172.22.10.15
lnxr04 IN A 172.22.10.16
lnxr05 IN A 172.22.10.17
lnxr06 IN A 172.22.10.18
lnxr07 IN A 172.22.10.19
lnxr08 IN A 172.22.10.20
lnxr09 IN A 172.22.10.21
lnxr10 IN A 172.22.10.22

Example B-5 illustrates round-robin balancing when querying mail exchange
records.
 Appendix B. Mstone workload generator 167

Example: B-5 Round-robin DNS mail exchange

$ host -t mx example.com 172.22.10.22
Using domain server:
Name: 172.22.10.22
Address: 172.22.10.22#53
Aliases:

example.com mail is handled by 10 lnxr04.example.com.
example.com mail is handled by 10 lnxr05.example.com.
example.com mail is handled by 10 lnxr06.example.com.
example.com mail is handled by 10 lnxr07.example.com.
example.com mail is handled by 10 lnxr01.example.com.
example.com mail is handled by 10 lnxr02.example.com.
example.com mail is handled by 10 lnxr03.example.com.
$ host -t mx example.com 172.22.10.22
Using domain server:
Name: 172.22.10.22
Address: 172.22.10.22#53
Aliases:

example.com mail is handled by 10 lnxr01.example.com.
example.com mail is handled by 10 lnxr02.example.com.
example.com mail is handled by 10 lnxr03.example.com.
example.com mail is handled by 10 lnxr04.example.com.
example.com mail is handled by 10 lnxr05.example.com.
example.com mail is handled by 10 lnxr06.example.com.
example.com mail is handled by 10 lnxr07.example.com.

Populating the LDAP database
To populate the LDAP database, we add sendmail users using an LDAP Data
Interchange Format (LDIF) import file. A portion of the LDIF definition is shown in
Example B-6 on page 169.
168 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Example: B-6 The LDIF definition of LDAP sendmail users: users.ldif

dn: uid=itso-user0, o=My Organization Name,c=US 1
userpassword: pwd
givenname: itso-user0
sn: itso-user0
cn: itso-user0
uid: itso-user0
uidNumber: 1000
gidNumber: 1000
mail: itso-user0@example.com
mailhost: lnxr01.example.com
homeDirectory: /home/user/itso-user0
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: inetLocalMailRecipient
objectclass: posixAccount

dn: uid=allusers, o=My Organization Name,c=US 2
userpassword: pwd
givenname: allusers
sn: allusers
cn: allusers
uid: allusers
mail: allusers@example.com
rfc822MailMember: itso-user0@example.com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: nisMailAlias

For each user, we add distinguished name (DN) entries:

1. A DN entry for the user in the form itso-usern

This entry defines a real sendmail user. As part of the definition, the user is
assigned to a specific mailhost (in this case, lnxr01.example.com).

2. A DN entry for the user allusers

Each user is added to the allusers alias. Mail addresses to
allusers@example.com is delivered to every sendmail user (itso-user0
through itso-user6999).

To add the users to the LDAP database, use the command:

ldifadd -D “cn=Manager,o=My Organization Name,c=US” -W -x -f users.ldif
 Appendix B. Mstone workload generator 169

170 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Appendix C. Performance Toolkit for VM

This appendix describes some of the Linux monitoring features available with the
IBM Performance Toolkit for VM.

C

© Copyright IBM Corp. 2003. All rights reserved. 171

Linux monitoring with the Performance Toolkit for VM
Retrieval and display of Linux internal performance data is based on the Linux
DDS server interface, originally written for use with the Resource Management
Facility (RMF™) PM. To monitor Linux internal performance, the following
components are required:

� The toolkit must be installed, configured, and active.
Performance Toolkit for VM, an optional feature of z/VM V4.4 (5739-A03).

� DDS interface must be installed and active; for further information, access:

http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm

� Performance data must be collected, stored, and managed on the Linux
system.

After these are active, specific information that can be provided includes:

� Linux system details:

– Processes created per second

– Context switches per second

– Apache:

• Requests per second

• Bytes per request

• Busy threads

• Idle threads

• 404 error rate

� For each Linux system:

– Linux CPU utilization, both user and kernel

– CPU utilization by processor

– CPU utilization by process

� For each Linux system:

– Linux memory utilization

– Total memory size

– Memory in use

– Memory use by process
172 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm

� For each Linux system:

– Linux network activity

– Packets received and sent per second

– Bytes received and sent per second

– Receive and send error rates

� For each Linux system:

– Linux file system usage

– I/O request rates, response times

– File system size, including megabytes free, percent used, and percent free

Additional, specific details about the installation and use of the toolkit are
included in z/VM: Performance Toolkit, SC24-6062.
 Appendix C. Performance Toolkit for VM 173

174 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

acronyms
CCW channel command word

CHPID channel-path identifier

CMS Conversational Monitor
System

CP Control Program

CP Central Processor

CTC Channel-to-channel

DASD direct access storage device

DNS Domain Name System

DPA dynamic paging area

ECKD extended count key data

ESCON Enterprise Systems
Connection

ESS Enterprise Storage Server

FBA fixed block architecture

FCP Fibre Channel Protocol

FICON Fibre Connection

FTP File Transfer Protocol

IBM International Business
Machines Corporation

ICF Internal Coupling Facility

IFL Integrated Facility for Linux

IML Initial Machine Load

IQDIO Internal Queued Direct Input
Output

ITSO International Technical
Support Organization

IUCV Inter-User Communications
Vehicle

LAN local area network

LDAP Lightweight Directory Access
Protocol

LPAR logical partition

LVM Logical Volume Manager

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
MDC minidisk cache

NSS named saved system

OSA Open Systems Adapter

PAV Parallel Access Volume

QDIO Queued Direct Input Output

RAID redundant array of
independent disks

RAMAC RAID Architecture with
Multi-Level Adaptive Cache

RDR Reader

RVA RAMAC Virtual Array

SCSI small computer system
interface

SNMP simple network management
protocol

SSCH Start Subchannel

WPBS WebSphere Performance
Benchmark Sample
 175

176 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 180.

� Linux for S/390, SG24-4987

http://www.ibm.com/redbooks/abstracts/sg244987.html

� Linux for IBM ^ zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299

http://www.ibm.com/redbooks/abstracts/sg246299.html

� Linux on IBM ^ zSeries and S/390: Large Scale Linux Deployment,
SG24-6824

http://www.ibm.com/redbooks/abstracts/sg246824.html

� Linux on IBM ^ zSeries and S/390: System Management, SG24-6820

http://www.ibm.com/redbooks/abstracts/sg246820.html

� Tuning IBM ^ xSeries Servers for Performance, SG24-5287

http://www.ibm.com/redbooks/abstracts/sg245287.html

� WebSphere Application Server V4 for Linux, Implementation and Deployment
Guide, REDP0405

http://www.ibm.com/redbooks/abstracts/redp0405.html

� Enterprise Systems Connection (ESCON) Implementation Guide, SG24-4662

http://www.ibm.com/redbooks/abstracts/sg244662.html

� FICON Native Implementation and Reference Guide, SG24-6266

http://www.ibm.com/redbooks/abstracts/sg246266.html

� IBM ^ zSeries Connectivity Handbook, SG24-5444

http://www.ibm.com/redbooks/abstracts/sg245444.html
© Copyright IBM Corp. 2003. All rights reserved. 177

http://www.ibm.com/redbooks/abstracts/sg244987.html
http://www.ibm.com/redbooks/abstracts/sg246264.html
http://www.ibm.com/redbooks/abstracts/sg246299.html
http://www.ibm.com/redbooks/abstracts/sg246824.html
http://www.ibm.com/redbooks/abstracts/sg246820.html
http://www.ibm.com/redbooks/abstracts/sg245287.html
http://www.ibm.com/redbooks/abstracts/sg244662.html
http://www.ibm.com/redbooks/abstracts/redp0405.html
http://www.ibm.com/redbooks/abstracts/sg246266.html
http://www.ibm.com/redbooks/abstracts/sg245444.html

� Getting Started with zSeries Fibre Channel Protocol, REDP0205

http://www.ibm.com/redbooks/abstracts/redp0205.html

� Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest
LAN, REDP3596

http://www.ibm.com/redbooks/abstracts/redp3596.html

� Implementing Fibre Channel Attachment on the ESS, SG24-6113

http://www.ibm.com/redbooks/abstracts/sg246113.html

Other resources
These publications are also relevant as further information sources:

� z/VM V4R3.0 Performance, SC24-5999

� z/VM V4R3.0 CP Planning and Administration, SC24-6043

� z/VM V4R3.0 Virtual Machine Operation, SC24-6036

� z/VM V4R3.0 System Operation, SC24-6000

� z/VM V4R3.0 Running Guest Operating Systems, SC24-5997

� z/VM V4R3.0 CP Command and Utility Reference, SC24-6008

� z/VM: Performance Toolkit, SC24-6062

� Linux for zSeries and S/390 Device Drivers and Installation Commands,
LNUX-1303

Referenced Web sites
These Web sites are also relevant as further information sources:

� z/VM Performance Resources

http://www.vm.ibm.com/perf/

� IBM developerWorks Linux for zSeries and S/390 home page

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml

� Velocity Software performance tips

http://linuxvm.com

� Linux for S/390 home page

http://linuxvm.org

� Samba dbench Benchmarking Tool

http://samba.org/ftp/tridge/dbench/
178 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning178 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.vm.ibm.com/perf/
http://samba.org/ftp/tridge/dbench/
http://www.ibm.com/redbooks/abstracts/sg246113.html
http://www.ibm.com/redbooks/abstracts/redp0205.html
http://linuxvm.com
http://linuxvm.org
http://www-124.ibm.com/developerworks/oss/linux390/index.shtml
http://www.ibm.com/redbooks/abstracts/redp3596.html

� IBM WebSphere Performance Benchmark Sample (Trade 2)

http://www.ibm.com/software/webservers/appserv/wpbs_download.html

� Page replacement in Linux 2.4 memory management by Rik van Riel

http://www.surriel.com/lectures/linux24-vm.html

� Chris Gould's Linux Kernel Architecture and Other OS Links

http://cs.uml.edu/~cgould

� Understanding the Linux Virtual Memory Manager by Mel Gorman

http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/

� The Linux memory management home page

http://linux-mm.org/

� Performance considerations for Linux guests

http://www.vm.ibm.com/perf/tips/linuxper.html

� Configuring processor storage

http://www.vm.ibm.com/perf/tips/storconf.html

� How to use VM shared kernel support

http://www.vm.ibm.com/linux/linuxnss.html

� z/VM, VSE, and Linux Technical Conference foils: z/VM Resource
Management, by Christine Casey

http://www.vm.ibm.com:2003/pdfs/V612up.pdf

� Bonnie benchmark home page

http://www.textuality.com/bonnie/

� Data Test program (dt) home page

http://www.bit-net.com/~rmiller/dt.html

� Iperf TCP and UDP bandwidth measurement tool

http://dast.nlanr.net/Projects/Iperf/

� The Mstone performance tool

http://www.mozilla.org/projects/mstone

� Mailstone utility documentation

http://docs.sun.com/source/816-6036-10/index.html

� LDAP routing for sendmail

http://www.sendmail.org/m4/ldap_routing.html
 Related publications 179

http://www.ibm.com/software/webservers/appserv/wpbs_download.html
http://www.surriel.com/lectures/linux24-vm.html
http://linux-mm.org/
http://www.vm.ibm.com:2003/pdfs/V612up.pdf
http://www.textuality.com/bonnie/
http://cs.uml.edu/~cgould
http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/
http://www.surriel.com/lectures/linux24-vm.html
http://cs.uml.edu/~cgould
http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/
http://www.vm.ibm.com/perf/tips/linuxper.html
http://www.vm.ibm.com/perf/tips/storconf.html
http://www.vm.ibm.com/linux/linuxnss.html
http://www.bit-net.com/~rmiller/dt.html
http://dast.nlanr.net/Projects/Iperf/
http://docs.sun.com/source/816-6036-10/index.html
http://www.mozilla.org/projects/mstone
http://www.mozilla.org/projects/mstone
http://www.mozilla.org/projects/mstone
http://docs.sun.com/source/816-6036-10/index.html
http://www.sendmail.org/m4/ldap_routing.html
http://www.sendmail.org/m4/ldap_routing.html
http://www.sendmail.org/m4/ldap_routing.html
http://linux-mm.org/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
180 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning180 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
/proc/meminfo 27
/proc/sys/vm/bdflush 138
/proc/sys/vm/page-cluster 58

A
APAR VM63122 119
APAR VM63282 36, 114
art of tuning a system 5

limitations 5
where tuning can help 5

B
bdflush 137

effect of age_buffer 140
effect of buffer cache 141
lazy write 137
parameters 137

benchmarks 4
Bonnie 130

C
CLONEDISK support 119
comparing ESCON and FICON

capabilities 134
multiple DASD devices 136
single DASD device 135

contention 4
cost of compiling the kernel 41
cost of routing 144

comparison 146
effect of bandwidth 146

counting timer ticks 110
CP scheduler 83

controls 89
dispatch list 85
dispatch time slice 83
dormant list 84
elapsed time slice 83
eligible list 84
inactivity 113
Linux timer patch 89
© Copyright IBM Corp. 2003. All rights reserved.
scheduling 85
SHARE value 94
state transitions 86
transaction classification 84
virtual processors 88

D
DASD

CHPID 127
comparing DIAGNOSE and ECKD 130
connect time 126
contention 128
disconnect time 127
MDC 129
pending time 127
queue time 126
queue time analysis 133
recommendations 127
response time 127
service time 127

dasdfmt command 115
DEFINE CPU command 121
demand page-in 14
DIAGNOSE 98 150
Diagnose I/O

benefits 130
DNS

configuration 166
double paging 15

avoiding 17
dt 137
dynamic paging area 14

E
ECKD

format 115
effect of idle servers 105
ESALPS xii

ESAMAP xii
ESAMON xii
ESATCP xii
ESAWEB xii

ESCON 133
 181

F
FCON/ESA

DDS 172
FICON 133
FORMAT command 115
free command 25

H
hogmem 48, 73

I
ifconfig command 150
INDICATE command 114
INDICATE LOAD command 85
INDICATE QUEUES command 113
Iperf 146

J
jiffies 108

K
kswapd 24, 112

CPU utilization 25
kupdated 137

L
Linux installation 116

Breeder 116
CPU time comparison 118
DASD I/O comparison 118
elapsed time comparison 117
GUI + FTP + Router 116
Memory usage comparison 120
QuickStart 116
RDR + FTP 116
RDR + FTP + Router 116

Linux memory 22
aggressive caching 30
buffer cache 22
file system cache 22
kernel 22, 26
management 23
paging 23
swapping 23
user 22

Linux timer patch 105, 108

CPU resources 113
LPAR 78

analysis example 82
options

capped 80, 82
dispatch slice 80
time slice 82
wait completion 80, 82

physical overhead 80
reducing physical overhead 81
shared versus dedicated processors 83
weights 81

LVM 127
performance 127

M
mkswap command 61
Mstone 160

configuration 161
operation 162

N
NETSNMP xiii
network performance comparison 153
NSS 4, 37

DEFSYS command 43
kernel configuration option

CONFIG_SHARED_KERNEL 38
memory map 38
System.map file 41
using a shared kernel 44

ntpd 107

O
OMEGAMON for VM xiv

EPILOG xiv
OMEGAMON XE for Linux xv

OpenLDAP
configuration 166

overcommitting resources 4

P
page cleaning 24
PAGEX/PFAULT 17
Performance Toolkit for VM 172
processor tuning recommendations 104
182 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Q
QDIO

APAR VM63282 114
CPU time 113
dispatch queue 112
memory costs 152
optimizations for z/VM 150
outstanding I/O 114
packet packing 152

QUERY VIRTUAL OSA command 151
QUICKDSP option 93

R
Redbooks Web site 180

Contact us xviii
RSRVDISK EXEC 74

S
sendmail

configuration 165
LDAP routing 163
sendmail users 169

server consolidation 2
SET QUICKDSP option 94
SET SHARE command 94
SET SRM DSPBUF command 89
SET SRM DSPSLICE command 92
SET SRM LDUBUF command 90
SET SRM MAXWSS command 91
SET SRM STORBUF command 90
SRM 89

analysis 95
DSPBUF control 89

warning 90
DSPSLICE control 92
LDUBUF control 90
loading user 90
MAXWSS control 91
STORBUF control 90

recommendation 93
when to use 93
XSTORE 93

swap device 23
allocation 51
channel program 54
channel program length comparison 55
CPU utilization 50
DIAGNOSE discipline 64

driver disciplines 48
ECKD discipline 50
effect of MDC 51
I/O rate and MDC hit ratio 53
MDC 23
MDC recommendation 52
page-clustering 58
reference pattern 56
swap rate 50
swap rates for ECKD and FBA 62
VDISK 59
z/VM measurements 50

swapon command 61

T
thrashing 24
TRACE command 111

V
VDISK 18, 60

DIAGNOSE discipline 68
enabling 61
initializing 74
multiple VDISKs 71
swap rate 62
using VDISKs for temporary files 76

virtual processors 121
measurements 121
processor constrained workload 124
scheduling 88

virtualization 3
VMRM 100
vmstat command 29, 49

W
WebSphere Performance Benchmark Sample 156
workload profile 7

Z
z/VM storage 10

allocation guidelines 12
contention below 2 GB 12
expanded storage 10
influencing 18
main memory 10
paging and spooling 20
paging space 10
 Index 183

184 Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning

Linux on IBM
E

s
e
r
v
e
r zSeries and S/390: Perform

ance M
easurem

ent and Tuning

®

SG24-6926-00 ISBN 0738429473

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux on IBM Eserver
zSeries and S/390:
Performance Measurement and Tuning

Understanding Linux
performance on
zSeries

z/VM performance
concepts

Tuning z/VM Linux
guests

This IBM Redbook examines performance measurement and
tuning for running Linux as a z/VM guest on IBM ^
zSeries and S/390 machines. This publication is intended for
system administrators and I/T architects responsible for
deploying Linux servers running under z/VM. We examine
performance concepts and identify tuning parameters that
influence system performance. Using examples, we investigate
performance and tuning topics for the memory, processor,
DASD, and networking subsystems. Performance is analyzed
at both the z/VM and Linux level. We provide tuning
recommendations and guidance intended to maximize
investment in Linux for zSeries.

The system used in this writing the redbook is an
IBM ^ zSeries 900 running z/VM Version 4.3 in an
LPAR. The Linux distributions used in this redbook include Red
Hat Version 7.2 for zSeries (based on a Linux 2.4.9 kernel) and
SuSE SLES7 (based on a Linux 2.4.7 kernel).

The intent of this redbook is to provide guidance on measuring
and optimizing performance using an existing zSeries
configuration. The examples are intended to demonstrate how
to make effective use of your zSeries investment. The
workloads used are chosen to exercise a specific subsystem;
any measurements provided should not be construed as a
benchmark.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	ESALPS overview
	Monitoring requirements
	Standard interfaces
	Performance database
	Real-time monitoring with ESAMON

	OMEGAMON for VM
	OMEGAMON XE for Linux

	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Virtualization and server consolidation
	1.1 Server consolidation and virtualization
	1.1.1 Virtualization of the CPU
	1.1.2 Virtualization of memory
	1.1.3 Levels of virtualization

	1.2 Sharing resources
	1.2.1 Overcommitting resources
	1.2.2 Top speed versus mileage

	1.3 The art of tuning a system
	1.3.1 What tuning does not do
	1.3.2 Where tuning can help
	1.3.3 Exchange of resources
	1.3.4 Workload profile

	Chapter 2. z/VM memory and storage concepts
	2.1 The z/VM storage hierarchy
	2.2 Guidelines for allocation of z/VM storage
	2.3 z/VM use of memory
	2.4 Virtual memory as seen by Linux guests
	2.4.1 The double paging effect
	2.4.2 Allocating memory to z/VM guests
	2.4.3 VDISKs

	2.5 Influencing z/VM memory management
	2.6 Paging and spooling

	Chapter 3. Linux virtual memory concepts
	3.1 Components of the Linux memory model
	3.1.1 Linux memory
	3.1.2 Linux swap space

	3.2 Linux memory management
	3.2.1 Page cleaning

	3.3 Observing Linux memory usage
	3.3.1 Kernel memory usage at system boot
	3.3.2 Detailed memory usage reported by /proc/meminfo
	3.3.3 Using the vmstat command

	3.4 Illustrating Linux aggressive caching
	3.4.1 Choosing the correct virtual machine size

	3.5 Conclusions for sizing z/VM Linux guests

	Chapter 4. Tuning memory for z/VM Linux guests
	4.1 Memory tuning recommendations
	4.1.1 Reduce storage of idle servers
	4.1.2 Reduce operational machine sizes
	4.1.3 Reduce infrastructure storage costs

	4.2 Exploiting the shared kernel
	4.2.1 Building an NSS-enabled Linux kernel
	4.2.2 Defining a skeletal system data file for the Linux NSS
	4.2.3 Saving the kernel in the Linux NSS
	4.2.4 Changing Linux images to use the shared kernel in NSS

	Chapter 5. Examining Linux swap device options
	5.1 Linux swapping
	5.2 Swapping with ECKD discipline
	5.2.1 Effect of the number of processes on Linux swapping
	5.2.2 Impact of page-cluster on MDC hit rate

	5.3 The FBA discipline
	5.3.1 Advantages of a VDISK swap device
	5.3.2 Enabling an FBA VDISK
	5.3.3 Swapping with FBA discipline

	5.4 The DIAGNOSE discipline
	5.4.1 Using DIAGNOSE I/O for 3390 DASD
	5.4.2 Swapping with DIAGNOSE discipline

	5.5 Using DIAGNOSE I/O for VDISK
	5.5.1 Enabling DIAGNOSE I/O for VDISK
	5.5.2 Swapping with DIAGNOSE I/O for VDISK

	5.6 Using multiple VDISKs for swapping
	5.7 Linux swap device recommendations
	5.8 Program text for hogmem
	5.9 Initializing a VDISK using CMS tools

	Chapter 6. CPU resources and the z/VM scheduler
	6.1 Understanding LPAR weights and options
	6.1.1 Physical LPAR overhead
	6.1.2 Converting weights to logical processor speed
	6.1.3 LPAR analysis example
	6.1.4 LPAR options
	6.1.5 Shared versus dedicated processors

	6.2 The CP scheduler
	6.2.1 Transaction classification
	6.2.2 The dormant list
	6.2.3 The eligible list
	6.2.4 The dispatch list

	6.3 Virtual machine scheduling
	6.3.1 Entering the dormant list
	6.3.2 Entering the eligible list
	6.3.3 Entering the dispatch list
	6.3.4 Scheduling virtual processors
	6.3.5 z/VM scheduling and the Linux timer patch

	6.4 CP scheduler controls
	6.4.1 Global SRM controls
	6.4.2 The CP QUICKDSP option
	6.4.3 The CP SET SHARE command

	6.5 Analysis of the SET SRM LDUBUF control
	6.5.1 Default setting analysis
	6.5.2 User queue analysis
	6.5.3 DASD analysis

	6.6 Virtual Machine Resource Manager
	6.6.1 Implications of VMRM
	6.6.2 Further information about VMRM

	Chapter 7. Tuning processor performance for z/VM Linux guests
	7.1 Processor tuning recommendations
	7.1.1 Processor performance on a constrained system

	7.2 The effect of idle servers on performance
	7.2.1 Network Time Protocol daemon

	7.3 The Linux timer patch
	7.3.1 Analyzing the timer ticks

	7.4 QDIO and the dispatch queue
	7.5 Infrastructure cost
	7.5.1 Formatting disks
	7.5.2 Installing new systems

	7.6 Performance effect of virtual processors
	7.6.1 Assigning virtual processors to a Linux guest
	7.6.2 Measuring the effect of virtual processors

	Chapter 8. Tuning DASD performance for z/VM Linux guests
	8.1 Factors that influence DASD I/O
	8.1.1 General DASD I/O recommendations

	8.2 Using VM DIAGNOSE I/O
	8.3 Comparing Diagnose and ECKD I/O
	8.4 Comparing ESCON and FICON performance
	8.4.1 Measuring ESCON and FICON for a single DASD device
	8.4.2 Measuring ESCON and FICON for multiple DASD devices

	8.5 Data caching and bdflush
	8.5.1 Parameters for bdflush

	Chapter 9. Measuring the cost of OSA, Linux, and z/VM networking
	9.1 Comparing the CPU time cost of routing
	9.2 The effect of bandwidth on routing costs
	9.3 QDIO optimizations for z/VM
	9.4 Memory costs associated with QDIO
	9.5 Comparing CPU cost by network type

	Appendix A. WebSphere Performance Benchmark Sample workload
	WebSphere Performance Benchmark Sample
	WebSphere Performance Benchmark Sample deployment options

	Appendix B. Mstone workload generator
	Mstone overview
	Operation of the Mstone workload
	LDAP routing in sendmail

	Configuring the Mstone client
	Configuring the example.com domain
	Populating the LDAP database

	Appendix C. Performance Toolkit for VM
	Linux monitoring with the Performance Toolkit for VM

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

